Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
ACS Appl Mater Interfaces. 2011 Aug;3(8):2861-8. doi: 10.1021/am200522v. Epub 2011 Jul 7.
Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes.
超滤 (UF) 膜在先进的水处理工艺中起着至关重要的预处理作用。然而,在运行系统中,生物污垢会降低膜的性能,并增加化学清洗的频率和成本。本工作展示了一种将抗菌纳米颗粒共价或离子键合到 UF 膜表面的新技术。将包裹在正电荷聚乙烯亚胺 (PEI) 中的银纳米颗粒 (AgNPs) 与存在和不存在 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐 (EDC) 的氧等离子体改性聚砜 UF 膜反应。PEI 的亲核伯胺与 UF 膜表面上的亲电羧基反应,形成静电和共价键。不可逆的修饰过程赋予膜表面显著的抗菌活性。后合成功能化方法,如这里所提出的方法,可以最大限度地提高纳米材料在膜表面的密度,并可能为制造各种反应性纳米复合膜提供更有效的途径。