Kudo Yasuo, Okada Yoshifumi
College of Information and Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
Bioinformation. 2011;6(5):200-3. doi: 10.6026/97320630006200. Epub 2011 May 26.
We apply a combined method of heuristic attribute reduction and evaluation of relative reducts in rough set theory to gene expression data analysis. Our method extracts as many relative reducts as possible from the gene-expression data and selects the best relative reduct from the viewpoint of constructing useful decision rules. Using a breast cancer dataset and a leukemia dataset, we evaluated the classification accuracy for the test samples and biological meanings of the rules. As a result, our method presented superior classification accuracy comparable to existing salient classifiers. Moreover, our method extracted interesting rules including a novel biomarker gene identified in recent studies. These results indicate the possibility that our method can serve as a useful tool for gene expression data analysis.
我们将粗糙集理论中启发式属性约简与相对约简评估的组合方法应用于基因表达数据分析。我们的方法从基因表达数据中提取尽可能多的相对约简,并从构建有用决策规则的角度选择最佳相对约简。使用乳腺癌数据集和白血病数据集,我们评估了测试样本的分类准确率和规则的生物学意义。结果,我们的方法呈现出与现有显著分类器相当的卓越分类准确率。此外,我们的方法提取了有趣的规则,包括近期研究中鉴定出的一个新型生物标志物基因。这些结果表明我们的方法有可能成为基因表达数据分析的有用工具。