Suppr超能文献

一种基于粗糙集理论发现生物标志物候选物的启发式方法。

A heuristic method for discovering biomarker candidates based on rough set theory.

作者信息

Kudo Yasuo, Okada Yoshifumi

机构信息

College of Information and Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.

出版信息

Bioinformation. 2011;6(5):200-3. doi: 10.6026/97320630006200. Epub 2011 May 26.

Abstract

We apply a combined method of heuristic attribute reduction and evaluation of relative reducts in rough set theory to gene expression data analysis. Our method extracts as many relative reducts as possible from the gene-expression data and selects the best relative reduct from the viewpoint of constructing useful decision rules. Using a breast cancer dataset and a leukemia dataset, we evaluated the classification accuracy for the test samples and biological meanings of the rules. As a result, our method presented superior classification accuracy comparable to existing salient classifiers. Moreover, our method extracted interesting rules including a novel biomarker gene identified in recent studies. These results indicate the possibility that our method can serve as a useful tool for gene expression data analysis.

摘要

我们将粗糙集理论中启发式属性约简与相对约简评估的组合方法应用于基因表达数据分析。我们的方法从基因表达数据中提取尽可能多的相对约简,并从构建有用决策规则的角度选择最佳相对约简。使用乳腺癌数据集和白血病数据集,我们评估了测试样本的分类准确率和规则的生物学意义。结果,我们的方法呈现出与现有显著分类器相当的卓越分类准确率。此外,我们的方法提取了有趣的规则,包括近期研究中鉴定出的一个新型生物标志物基因。这些结果表明我们的方法有可能成为基因表达数据分析的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/008c/3124797/3de45aa8b136/97320630006200F1.jpg

相似文献

1
A heuristic method for discovering biomarker candidates based on rough set theory.
Bioinformation. 2011;6(5):200-3. doi: 10.6026/97320630006200. Epub 2011 May 26.
2
Pruning Decision Rules by Reduct-Based Weighting and Ranking of Features.
Entropy (Basel). 2022 Nov 3;24(11):1602. doi: 10.3390/e24111602.
3
δ-Cut decision-theoretic rough set approach: model and attribute reductions.
ScientificWorldJournal. 2014;2014:382439. doi: 10.1155/2014/382439. Epub 2014 Jul 22.
4
Prediction of cancer using customised fuzzy rough machine learning approaches.
Healthc Technol Lett. 2018 Dec 24;6(1):13-18. doi: 10.1049/htl.2018.5055. eCollection 2019 Feb.
5
Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma.
Comput Methods Programs Biomed. 2006 Aug;83(2):147-56. doi: 10.1016/j.cmpb.2006.06.007. Epub 2006 Aug 8.
6
An Attribute Reduction Method Using Neighborhood Entropy Measures in Neighborhood Rough Sets.
Entropy (Basel). 2019 Feb 7;21(2):155. doi: 10.3390/e21020155.
7
Rough set based rule induction in decision making using credible classification and preference from medical application perspective.
Comput Methods Programs Biomed. 2016 Apr;127:273-89. doi: 10.1016/j.cmpb.2015.12.015. Epub 2016 Jan 11.
10

本文引用的文献

1
Applications of DNA microarray in disease diagnostics.
J Microbiol Biotechnol. 2009 Jul;19(7):635-46.
3
Use of microarray technologies in toxicology research.
Neurotoxicology. 2003 Jun;24(3):321-32. doi: 10.1016/S0161-813X(02)00193-6.
4
Gene expression profiles of human breast cancer progression.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5974-9. doi: 10.1073/pnas.0931261100. Epub 2003 Apr 24.
5
Statistical tests for differential expression in cDNA microarray experiments.
Genome Biol. 2003;4(4):210. doi: 10.1186/gb-2003-4-4-210. Epub 2003 Mar 17.
6
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.
Nat Genet. 2002 Jan;30(1):41-7. doi: 10.1038/ng765. Epub 2001 Dec 3.
7
Predicting the clinical status of human breast cancer by using gene expression profiles.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7. doi: 10.1073/pnas.201162998. Epub 2001 Sep 18.
8
DNA microarrays in drug discovery and development.
Nat Genet. 1999 Jan;21(1 Suppl):48-50. doi: 10.1038/4475.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验