School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK.
J Am Chem Soc. 2011 Aug 24;133(33):13031-5. doi: 10.1021/ja2018543. Epub 2011 Aug 1.
The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra.
探索低成本、安全的大型锂电池阴极材料的重要性,使得人们对 Li(2)FeSiO(4)越来越感兴趣。Li(2)FeSiO(4)的结构在循环过程中会发生显著变化,从最初的 γ(s)形式转变为反式 β(II)多晶型;因此,确定循环材料的结构非常重要。在 γ(s)相中,一半的 LiO(4)、FeO(4)和 SiO(4)四面体以有序的方式指向相反的方向,并表现出广泛的边缘共享。在循环过程中向反式 β(II)多晶型转变涉及到一半的 SiO(4)、FeO(4)和 LiO(4)四面体的反转,使得它们现在都指向同一个方向,消除了阳离子位置之间的边缘共享并使氧层变平。由于结构的变化,循环结构中 Li(+)的输运路径和相应的 Li-Li 分离与初始材料有很大的不同,正如计算机建模所揭示的那样,涉及到两个 Li 位置之间的明显之字形路径,以及通过与 LiO(4)四面体共享面的未占据的八面体位置之间的路径。