Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA.
J Magn Reson. 2011 Sep;212(1):64-73. doi: 10.1016/j.jmr.2011.06.008. Epub 2011 Jul 7.
An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up structural fitting by rendering the dependence on the torsion angles Φ and Ψ in a purely diagonal form. Back-calculation of the simulated solid-state NMR spectra of protein G involving 15N chemical shift anisotropy (CSA), and 1H-15N and 1Hα-13Cα dipolar couplings was performed by taking into account non-planarity of the peptide linkages and experimental uncertainty. Even a relatively small (to within 1 ppm) random variation in the CSA values arising from uncertainties in the tensor parameters yields the RMSD's of the back-calculated structures of more than 10 Å. Therefore, the 15N CSA has been substituted with heteronuclear dipolar couplings which are derived from the highly conserved bond lengths and bond angles associated with the amino-acid covalent geometry. Using the additional 13Cα-15N and 13C'-15N dipolar couplings makes it possible to calculate protein structures entirely from "shiftless" solid-state NMR data. With the simulated "experimental" uncertainty of 15 Hz for protein G and 120 Hz for a helical hairpin derived from bacteriorhodopsin, back-calculation of the synthetic dipolar NMR spectra yielded a converged set of solutions. The use of distance restraints dramatically improves structural convergence even if larger experimental uncertainties are assumed.
本文提出了一种在扭转角空间中从定向样本 NMR 数据计算蛋白质结构的有效形式。利用不可约的旋转球面基,处理 NMR 可观测值的各向异性。引入了一个中间旋转变换,通过使 Φ 和 Ψ 扭角的依赖性呈现出纯粹的对角形式,大大加快了结构拟合的速度。通过考虑肽键的非平面性和实验不确定性,对涉及 15N 化学位移各向异性(CSA)、1H-15N 和 1Hα-13Cα 偶极耦合的蛋白质 G 的模拟固态 NMR 谱进行了反算。即使 CSA 值的随机变化(在张量参数不确定性范围内为 1 ppm)相对较小,也会导致反算结构的 RMSD 超过 10 Å。因此,用源自与氨基酸共价几何相关的高度保守的键长和键角的异核偶极耦合取代了 15N CSA。使用附加的 13Cα-15N 和 13C'-15N 偶极耦合,可以完全从“无位移”固态 NMR 数据计算蛋白质结构。对于蛋白质 G,模拟“实验”不确定性为 15 Hz,对于源自细菌视紫红质的螺旋发夹,模拟“实验”不确定性为 120 Hz,反算合成偶极 NMR 谱得到了一组收敛的解。即使假设实验不确定性更大,使用距离约束也可以大大提高结构收敛性。