Mazzanti M, DeFelice L J
Department of Anatomy and Cell Biology, Emory University, Atlanta, Georgia 30322.
Biophys J. 1990 Oct;58(4):1059-65. doi: 10.1016/S0006-3495(90)82448-6.
How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the more usual kinetics.
钙通道在心脏动作电位期间是如何传导钙离子的?我们试图通过应用一种双微电极技术来回答这个问题,该技术先前用于记录钠电流和钾电流,即我们同时记录膜片电流和动作电位(马赞蒂,M.,以及L. J. 德费利切。1987年。《生物物理杂志》12:95 - 100,以及1988年。《生物物理杂志》54:1139 - 1148;韦利斯,D.,L. J. 德费利切,以及M. 马赞蒂。1990年。《生物物理杂志》57:41 - 48)。在本文中,我们还将该技术获得的动作电流与标准电压钳实验中获得的阶跃协议电流进行比较。在10 mM钙/1 mM钡和10 mM钡溶液中测量单个钙通道。为了描述我们的部分结果,我们使用了赫斯,P.,J. B. 兰斯曼,以及R. W. 钱恩(1984年。《自然》(伦敦)。311:538 - 544)引入的命名法。以钡作为电荷载体,当膜片电压从20 mV变化到 - 20 mV时,钙通道动力学从长开放时间迅速转变为短开放时间。这种电压依赖性转变发生在动作电位期间和阶跃协议实验中。以钙作为电荷载体时,所有电压下的电流都很短暂,很难确定膜片中通道的数量或单个通道的电导率。然而,偶尔钙传导通道会自发转变为长开放时间动力学(按照赫斯等人1984年的记法,模式2)。当这种情况发生时,大约每100次心跳出现一次,此时膜片中通常似乎只有一个通道。在这种罕见的情况下,通道开放时间足够长,可以在10 mM钙/1 mM钡溶液中测量其电导率。该值为8 - 10皮西门子,约为钡溶液中电导率的一半。由于以钙作为电荷载体时,长开放时间很少出现,它们对动作电位期间任何特定时间的平均钙电流贡献可忽略不计。然而,与通过更常见动力学进入的钙离子数量相比,这些长开放时间期间进入的钙离子总数可能是显著的。