Suppr超能文献

膜片钳细胞生理学自动化的进展。

Progress in automating patch clamp cellular physiology.

作者信息

Annecchino Luca A, Schultz Simon R

机构信息

Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK.

出版信息

Brain Neurosci Adv. 2018 May 17;2:2398212818776561. doi: 10.1177/2398212818776561. eCollection 2018 Jan-Dec.

Abstract

Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.

摘要

在过去几十年中,膜片钳电生理学改变了生命科学领域的研究。自问世以来,自动膜片钳平台有了长足的发展,展示出了处理电压门控通道和配体门控通道的能力,并在药物发现和生物医学研究中显示出发挥关键作用的潜力。不幸的是,早期系统所局限的细胞悬浮测定法无法重现生物学相关的细胞环境,也无法捕捉突触生理学和网络动力学的高阶方面。体内膜片钳电生理学有潜力产生更具生物学复杂性的信息,在逆向工程单细胞和网络神经元计算的分子和细胞机制方面特别有用,同时捕捉人类疾病机制的重要方面和可能的治疗策略。不幸的是,这是一个难度较大的操作,学习曲线很陡,这限制了该技术的推广。幸运的是,体内膜片钳电生理学似乎特别适合机器人自动化。在这篇综述中,我们记录了自动膜片钳技术的发展历程,从基于多孔板的早期系统到自动化平面阵列平台,再到能够在体内进行双光子靶向全细胞膜片钳电生理记录的现代机器人平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02d/7058203/37b80d719b0f/10.1177_2398212818776561-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验