Laboratorio di Patologia Molecolare, Centro di Biotecnologie per la Ricerca Medica Applicata, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy.
Toxicol Sci. 2011 Oct;123(2):523-41. doi: 10.1093/toxsci/kfr179. Epub 2011 Jul 8.
In human neuroblastoma SH-SY5Y cells, hydrogen peroxide (H(2)O(2), 200μM) rapidly (< 5 min) induced autophagy, as shown by processing and vacuolar relocation of light chain 3(LC3). Accumulation of autophagosome peaked at 30 min of H(2)O(2) exposure. The continuous presence of H(2)O(2) eventually (at > 60 min) caused autophagy-dependent annexin V-positive cell death. However, the cells exposed to H(2)O(2) for 30 min and then cultivated in fresh medium could recover and grow, despite ongoing autophagy. H(2)O(2) rapidly (5 min) triggered the formation of dichlorofluorescein-sensitive HO(·)-free radicals within mitochondria, whereas the mitochondria-associated oxidoradicals revealed by MitoSox (O(2)(·-)) became apparent after 30 min of exposure to H(2)O(2). 3-Methyladenine inhibited autophagy and cell death, but not the generation of HO(·). Genetic silencing of beclin-1 prevented bax- and annexin V-positive cell death induced by H(2)O(2), confirming the involvement of canonical autophagy in peroxide toxicity. The lysosomotropic iron chelator deferoxamine (DFO) prevented the mitochondrial generation of both HO(.) and O(2)(·-) and suppressed the induction of autophagy and of cell death by H(2)O(2). Upon exposure to H(2)O(2), Akt was intensely phosphorylated in the first 30 min, concurrently with mammalian target of rapamycin inactivation and autophagy, and it was dephosphorylated at 2 h, when > 50% of the cells were dead. DFO did not impede Akt phosphorylation, which therefore was independent of reactive oxygen species (ROS) generation but inhibited Akt dephosphorylation. In conclusion, exogenous H(2)O(2) triggers two parallel independent pathways, one leading to autophagy and autophagy-dependent apoptosis, the other to transient Akt phosphorylation, and both are inhibited by DFO. The present work establishes HO(·) as the autophagy-inducing ROS and highlights the need for free lysosomal iron for its production within mitochondria in response to hydrogen peroxide.
在人类神经母细胞瘤 SH-SY5Y 细胞中,过氧化氢(H2O2,200μM)迅速(<5 分钟)诱导自噬,表现为轻链 3(LC3)的加工和液泡重定位。自噬体的积累在 H2O2 暴露 30 分钟时达到峰值。持续存在 H2O2 最终(>60 分钟)导致自噬依赖性膜联蛋白 V 阳性细胞死亡。然而,暴露于 H2O2 30 分钟然后在新鲜培养基中培养的细胞可以恢复和生长,尽管持续存在自噬。H2O2 迅速(5 分钟)触发线粒体中二氯荧光素敏感的 HO·-自由基的形成,而线粒体相关的氧化自由基通过 MitoSox(O2·-)在暴露于 H2O2 30 分钟后才变得明显。3-甲基腺嘌呤抑制自噬和细胞死亡,但不抑制 HO·的产生。Beclin-1 的基因沉默阻止了 H2O2 诱导的 bax 和膜联蛋白 V 阳性细胞死亡,证实了经典自噬在过氧化物毒性中的作用。溶酶体转位铁螯合剂去铁胺(DFO)可防止 HO·和 O2·-在线粒体中的生成,并抑制 H2O2 诱导的自噬和细胞死亡。暴露于 H2O2 后,Akt 在最初的 30 分钟内被强烈磷酸化,同时伴随着哺乳动物雷帕霉素靶蛋白失活和自噬,而在 2 小时时去磷酸化,此时>50%的细胞死亡。DFO 不阻止 Akt 的磷酸化,因此它独立于活性氧(ROS)的产生,但抑制 Akt 的去磷酸化。总之,外源性 H2O2 触发两条平行的独立途径,一条导致自噬和自噬依赖性细胞凋亡,另一条导致 Akt 的瞬时磷酸化,两者都被 DFO 抑制。本研究确立了 HO·作为诱导自噬的 ROS,并强调了在过氧化氢的作用下,游离溶酶体铁对于其在线粒体中的产生的必要性。