Suppr超能文献

利用大肠杆菌 NAD(+)营养缺陷型突变株来确定细胞内 NAD(H)水平的极值。

Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant.

机构信息

Dalian Institute of Chemical Physics, CAS, Dalian 116023, People's Republic of China.

出版信息

Appl Environ Microbiol. 2011 Sep;77(17):6133-40. doi: 10.1128/AEM.00630-11. Epub 2011 Jul 8.

Abstract

NAD (NAD(+)) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD(+) level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD(+) auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD(+) de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD(+). We then constructed the NAD(+)-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD(+) biosynthesis in cells harboring the ntt4 gene. The minimal NAD(+) level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD(+), while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD(+) was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD(+) concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed.

摘要

NAD(NAD(+))及其还原形式(NADH)是生物系统中普遍存在的辅酶。然而,由于 NAD(+)水平受生物合成调控机制的严格控制,因此很难确定活细胞中细胞 NAD(H)水平的极值。在这里,我们开发了一种策略来确定遗传工程改造为 NAD(+)营养缺陷型的大肠杆菌细胞中的极端 NAD(H)水平。首先,我们在缺失负责 NAD(+)从头生物合成的 nadC 基因的大肠杆菌突变体 YJE001 中表达编码 NAD(H)转运蛋白的 ntt4 基因,并表明 NTT4 赋予突变菌株在外源 NAD(+)存在下更好的生长能力。然后,我们通过破坏负责 NAD(+)生物合成的最后一步的必需基因 nadE 构建了 NAD(+)-营养缺陷型突变体 YJE003。在预加载 NAD(+)的增殖 YJE003 细胞中,在 M9 培养基中确定最小 NAD(+)水平,而通过暴露细胞于高浓度的外源 NAD(H)来确定最大 NAD(H)水平。与补充 NADH 相比,当 fed NAD(+)时,细胞生长更快,细胞内 NAD(H)水平更高。细胞内 NAD(H)水平随外源 NAD(+)浓度的增加而增加,直到达到平台期。因此,确定了最小 NAD(H)水平为 0.039 mM,最大 NAD(H)水平为 8.49 mM,分别为野生型细胞的 0.044×和 9.6×。最后,简要讨论了该策略在生物技术中的潜在应用。

相似文献

引用本文的文献

本文引用的文献

6
Metabolic impact of increased NADH availability in Saccharomyces cerevisiae.增加酿酒酵母中 NADH 可用性的代谢影响。
Appl Environ Microbiol. 2010 Feb;76(3):851-9. doi: 10.1128/AEM.02040-09. Epub 2009 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验