Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UMR 5004/Institut National de la Recherche Agronomique/SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France.
Plant Cell. 2011 Jul;23(7):2725-37. doi: 10.1105/tpc.111.088088. Epub 2011 Jul 8.
We present data supporting a general role for FERRIC REDICTASE DEFECTIVE3 (FRD3), an efflux transporter of the efficient iron chelator citrate, in maintaining iron homeostasis throughout plant development. In addition to its well-known expression in root, we show that FRD3 is strongly expressed in Arabidopsis thaliana seed and flower. Consistently, frd3 loss-of-function mutants are defective in early germination and are almost completely sterile, both defects being rescued by iron and/or citrate supply. The frd3 fertility defect is caused by pollen abortion and is associated with the male gametophytic expression of FRD3. Iron imaging shows the presence of important deposits of iron on the surface of aborted pollen grains. This points to a role for FRD3 and citrate in proper iron nutrition of embryo and pollen. Based on the findings that iron acquisition in embryo, leaf, and pollen depends on FRD3, we propose that FRD3 mediated-citrate release in the apoplastic space represents an important process by which efficient iron nutrition is achieved between adjacent tissues lacking symplastic connections. These results reveal a physiological role for citrate in the apoplastic transport of iron throughout development, and provide a general model for multicellular organisms in the cell-to-cell transport of iron involving extracellular circulation.
我们提供的数据支持 FERRIC REDICTASE DEFECTIVE3(FRD3)的一般作用,FRD3 是一种有效的铁螯合剂柠檬酸的外排转运蛋白,在整个植物发育过程中维持铁的动态平衡。除了在根部的众所周知的表达外,我们还表明 FRD3 在拟南芥种子和花中强烈表达。一致地,frd3 功能丧失突变体在早期发芽中存在缺陷,并且几乎完全不育,这两种缺陷都可以通过铁和/或柠檬酸的供应来挽救。frd3 育性缺陷是由花粉败育引起的,与 FRD3 在雄性配子体中的表达有关。铁成像显示在败育花粉粒的表面存在重要的铁沉积物。这表明 FRD3 和柠檬酸在胚胎和花粉的适当铁营养中发挥作用。基于胚胎、叶片和花粉中铁的获取依赖于 FRD3 的发现,我们提出 FRD3 介导的细胞外空间中柠檬酸的释放代表了一种重要的过程,通过该过程,在缺乏质体连接的相邻组织之间实现了有效的铁营养。这些结果揭示了柠檬酸在整个发育过程中铁的质外体运输中的生理作用,并为涉及细胞外循环的多细胞生物中铁的细胞间运输提供了一般模型。