Suppr超能文献

错误折叠的 PrP 通过与 20S 蛋白酶体相互作用并抑制底物进入来损害 UPS。

Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry.

机构信息

Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, UK.

出版信息

EMBO J. 2011 Jul 8;30(15):3065-77. doi: 10.1038/emboj.2011.224.

Abstract

Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to toxic β-sheet isoforms (PrP(Sc)), which are reported to inhibit the ubiquitin-proteasome system (UPS). Accordingly, UPS substrates accumulate in prion-infected mouse brains, suggesting impairment of the 26S proteasome. A direct interaction between its 20S core particle and PrP isoforms was demonstrated by immunoprecipitation. β-PrP aggregates associated with the 20S particle, but did not impede binding of the PA26 complex, suggesting that the aggregates do not bind to its ends. Aggregated β-PrP reduced the 20S proteasome's basal peptidase activity, and the enhanced activity induced by C-terminal peptides from the 19S ATPases or by the 19S regulator itself, including when stimulated by polyubiquitin conjugates. However, the 20S proteasome was not inhibited when the gate in the α-ring was open due to a truncation mutation or by association with PA26/PA28. These PrP aggregates inhibit by stabilising the closed conformation of the substrate entry channel. A similar inhibition of substrate entry into the proteasome may occur in other neurodegenerative diseases where misfolded β-sheet-rich proteins accumulate.

摘要

朊病毒疾病与细胞朊蛋白(PrP(C))转化为有毒的β-折叠异构体(PrP(Sc))有关,据报道,这种转化会抑制泛素-蛋白酶体系统(UPS)。因此,在感染朊病毒的小鼠大脑中,UPS 底物会积累,这表明 26S 蛋白酶体受到了损害。通过免疫沉淀实验证实了其 20S 核心颗粒与 PrP 异构体之间的直接相互作用。β-PrP 聚集体与 20S 颗粒相关联,但不阻碍 PA26 复合物的结合,这表明聚集体不与其末端结合。聚集的β-PrP 降低了 20S 蛋白酶体的基础肽酶活性,并且增强了由 19S ATP 酶的 C 端肽或由 19S 调节剂本身诱导的活性,包括当被多聚泛素缀合物刺激时。然而,当由于截断突变或与 PA26/PA28 相关联而导致 α 环中的门打开时,20S 蛋白酶体不会被抑制。这些 PrP 聚集体通过稳定底物进入通道的封闭构象来抑制。在其他神经退行性疾病中,错误折叠的富含β-折叠的蛋白质积累,可能会发生类似的进入蛋白酶体的底物抑制。

相似文献

2
Interaction between misfolded PrP and the ubiquitin-proteasome system in prion-mediated neurodegeneration.
Acta Biochim Biophys Sin (Shanghai). 2013 Jun;45(6):477-84. doi: 10.1093/abbs/gmt020. Epub 2013 Feb 28.
3
Misfolded PrP and a novel mechanism of proteasome inhibition.
Prion. 2012 Jan-Mar;6(1):32-6. doi: 10.4161/pri.6.1.18272.
4
Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system.
Acta Neuropathol. 2016 Mar;131(3):411-25. doi: 10.1007/s00401-015-1508-y. Epub 2015 Dec 8.
6
Disease-associated prion protein oligomers inhibit the 26S proteasome.
Mol Cell. 2007 Apr 27;26(2):175-88. doi: 10.1016/j.molcel.2007.04.001.
7
DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation.
J Biol Chem. 2001 Dec 28;276(52):49400-9. doi: 10.1074/jbc.M106707200. Epub 2001 Oct 16.
9
Immunological mimicry of PrPC-PrPSc interactions: antibody-induced PrP misfolding.
Protein Eng Des Sel. 2009 Aug;22(8):523-9. doi: 10.1093/protein/gzp038. Epub 2009 Jul 14.
10
Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis.
J Biol Chem. 2005 Nov 18;280(46):38851-61. doi: 10.1074/jbc.M506600200. Epub 2005 Sep 12.

引用本文的文献

1
Reduction of RAD23A extends lifespan and mitigates pathology in TDP-43 mice.
bioRxiv. 2024 Sep 14:2024.09.10.612226. doi: 10.1101/2024.09.10.612226.
2
VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis.
Life Sci Alliance. 2024 Apr 3;7(6). doi: 10.26508/lsa.202302456. Print 2024 Jun.
3
Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins.
Mol Neurobiol. 2024 Jul;61(7):4055-4073. doi: 10.1007/s12035-023-03824-8. Epub 2023 Dec 7.
4
Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases.
Biology (Basel). 2023 Aug 25;12(9):1169. doi: 10.3390/biology12091169.
5
Proteotoxic stress and the ubiquitin proteasome system.
Semin Cell Dev Biol. 2024 Mar 15;156:107-120. doi: 10.1016/j.semcdb.2023.08.002. Epub 2023 Sep 19.
6
Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family.
Nat Commun. 2023 May 30;14(1):3126. doi: 10.1038/s41467-023-38404-w.
7
Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets.
Front Neurosci. 2022 Sep 6;16:966019. doi: 10.3389/fnins.2022.966019. eCollection 2022.
8
Direct Analysis of Mitochondrial Damage Caused by Misfolded/Destabilized Proteins.
Int J Mol Sci. 2022 Aug 31;23(17):9881. doi: 10.3390/ijms23179881.
9
Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance.
Mol Neurobiol. 2022 Sep;59(9):5379-5407. doi: 10.1007/s12035-022-02897-1. Epub 2022 Jun 14.
10
Advances in Proteasome Enhancement by Small Molecules.
Biomolecules. 2021 Nov 30;11(12):1789. doi: 10.3390/biom11121789.

本文引用的文献

4
Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening.
Mol Cell. 2009 Dec 11;36(5):794-804. doi: 10.1016/j.molcel.2009.11.015.
6
Variably modulated gating of the 26S proteasome by ATP and polyubiquitin.
Biochem J. 2009 Jul 15;421(3):397-404. doi: 10.1042/BJ20090528.
7
HECTD2 is associated with susceptibility to mouse and human prion disease.
PLoS Genet. 2009 Feb;5(2):e1000383. doi: 10.1371/journal.pgen.1000383. Epub 2009 Feb 13.
9
Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome.
Nat Struct Mol Biol. 2009 Feb;16(2):219-25. doi: 10.1038/nsmb.1547. Epub 2009 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验