Suppr超能文献

不同小分子热休克蛋白对心房颤动果蝇模型收缩功能障碍和结构变化的影响。

Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation.

机构信息

Department of Clinical Pharmacology, University Institute for Drug Exploration, University of Groningen, University Medical Center Groningen, The Netherlands.

出版信息

J Mol Cell Cardiol. 2011 Sep;51(3):381-9. doi: 10.1016/j.yjmcc.2011.06.008. Epub 2011 Jul 13.

Abstract

The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.

摘要

最常见的临床心动过速,心房颤动(AF),是一种进行性疾病,由心肌细胞重塑引起,最终导致收缩功能障碍和 AF 持续存在。最近,我们发现热休克蛋白(HSPs),特别是小 HSPB1 成员,对实验性 AF 模型中的心动过速重塑具有保护作用。目前,我们对心动过速重塑和抗重塑药物的理解受到缺乏合适(遗传)可操作的体内模型的限制,无法快速筛选重塑中的关键靶点。我们假设,利用果蝇可以通过药物治疗或利用遗传操作的过表达小 HSP 株系来研究心动过速重塑和 HSP 的保护作用。蝇蛹的快速起搏导致逐渐而显著的心肌细胞重塑,与正常起搏的蛹相比,表现为收缩率降低、心律失常发作增加和心壁缩短减少。热休克或 HSP 诱导剂 GGA 和 BGP-15 的预处理导致内源性 HSP 过表达,并能抵抗心动过速重塑。与过表达其他小 HSP(DmHSP27、DmHSP67Bc、DmCG4461、DmCG7409 和 DmCG14207)相反,过表达 DmHSP23 的果蝇对心动过速重塑具有保护作用。快速起搏的蝇蛹心壁的(超)结构评估显示肌节丢失和线粒体损伤,而过表达 DmHSP23 的蝇蛹则没有。此外,快速起搏诱导钙蛋白酶活性显著增加,而过表达 DmHSP23 的蝇蛹则可预防这种增加。蝇蛹的快速起搏导致心肌细胞重塑,这种重塑可以通过一般的 HSP 诱导治疗和过表达单个小 HSP DmHSP23 来预防。因此,快速起搏的 D. melanogaster 可作为一种体内模型系统,用于快速鉴定对抗与 AF 相关的心肌细胞重塑的新型靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验