Suppr超能文献

热休克蛋白诱导剂 GGA*-59 通过恢复实验性心房颤动中的微管网络逆转收缩和结构重构。

Heat shock protein inducer GGA*-59 reverses contractile and structural remodeling via restoration of the microtubule network in experimental Atrial Fibrillation.

机构信息

Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, the Netherlands.

Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, the Netherlands.

出版信息

J Mol Cell Cardiol. 2019 Sep;134:86-97. doi: 10.1016/j.yjmcc.2019.07.006. Epub 2019 Jul 11.

Abstract

BACKGROUND

Atrial Fibrillation (AF) is the most common progressive tachyarrhythmia. AF progression is driven by abnormalities in electrical impulse formation and contractile function due to structural remodeling of cardiac tissue. Previous reports indicate that structural remodeling is rooted in derailment of protein homeostasis (proteostasis). Heat shock proteins (HSPs) play a critical role in facilitating proteostasis. Hence, the HSP-inducing compound geranylgeranylacetone (GGA) and its derivatives protect against proteostasis derailment in experimental models for AF. Whether these compounds also accelerate reversibility from structural remodeling in tachypaced cardiomyocytes is unknown.

OBJECTIVE

To investigate whether the potent HSP inducer GGA*-59 restores structural remodeling and contractile dysfunction in tachypaced cardiomyocytes and explore the underlying mechanisms.

MATERIALS AND RESULTS

HL-1 cardiomyocytes post-treated with GGA*-59 or recombinant HSPB1 (rcHSPB1) revealed increased levels of HSPB1 expression and accelerated recovery from tachypacing (TP)-induced calcium transient (CaT) loss compared to non-treated cardiomyocytes. In addition, protein levels of the microtubule protein (acetylated) α-tubulin, and contractile proteins cardiac troponin I (cTnI) and troponin T (cTnT) were reduced after TP and significantly recovered by GGA*-59 or rcHSPB1 post-treatment. The mRNA levels of α-tubulin encoding genes, but not cardiac troponin genes, were reduced upon TP and during recovery, but significantly enhanced by GGA*-59 and rcHSPB1 post-treatment. In addition, TP increased calpain activity, which remained increased during recovery and GGA*-59 post-treatment. However, HDAC6 activity, which deacetylates α-tubulin resulting in microtubule disruption, was significantly increased after TP and during recovery, but normalized to control levels by GGA*-59 or rcHSPB1 post-treatment in HL-1 cardiomyocytes.

CONCLUSIONS

Our results imply that the HSP inducer GGA*-59 and recombinant HSPB1 accelerate recovery from TP-induced structural remodeling and contractile dysfunction in HL-1 cardiomyocytes. GGA*-59 increases HSPB1 levels, represses HDAC6 activity and restores contractile protein and microtubule levels after TP, indicating that HSP-induction is an interesting target to accelerate recovery from AF-induced remodeling.

摘要

背景

心房颤动(AF)是最常见的进行性心动过速。由于心脏组织的结构重塑,电脉冲形成和收缩功能的异常驱动了 AF 的进展。先前的报告表明,结构重塑源于蛋白质稳态(蛋白质平衡)的脱轨。热休克蛋白(HSPs)在促进蛋白质平衡中起关键作用。因此,热休克诱导化合物香叶基丙酮(GGA)及其衍生物可防止 AF 实验模型中蛋白质平衡脱轨。这些化合物是否也能加速快节奏起搏心肌细胞的结构重塑的逆转尚不清楚。

目的

研究强效 HSP 诱导剂 GGA*-59 是否能恢复快节奏起搏心肌细胞的结构重塑和收缩功能障碍,并探讨其潜在机制。

材料和结果

与未处理的心肌细胞相比,用 GGA*-59 或重组 HSPB1(rcHSPB1)后处理的 HL-1 心肌细胞显示 HSPB1 表达水平增加,并加速了快节奏起搏(TP)诱导的钙瞬变(CaT)损失的恢复。此外,微管蛋白(乙酰化)α-微管蛋白和收缩蛋白肌钙蛋白 I(cTnI)和肌钙蛋白 T(cTnT)的蛋白水平在 TP 后降低,并通过 GGA*-59 或 rcHSPB1 后处理显著恢复。α-微管蛋白编码基因的 mRNA 水平在 TP 后和恢复过程中降低,但在 GGA*-59 和 rcHSPB1 后处理后显著增强。此外,TP 增加钙蛋白酶活性,该活性在恢复过程中仍然增加,而 GGA*-59 后处理则增加钙蛋白酶活性。然而,HDAC6 活性(使α-微管蛋白去乙酰化导致微管解体)在 TP 后和恢复过程中显著增加,但在 GGA*-59 或 rcHSPB1 后处理后恢复到对照水平。

结论

我们的结果表明,HSP 诱导剂 GGA*-59 和重组 HSPB1 可加速 HL-1 心肌细胞从 TP 诱导的结构重塑和收缩功能障碍中恢复。GGA*-59 增加 HSPB1 水平,抑制 HDAC6 活性,并在 TP 后恢复收缩蛋白和微管蛋白水平,表明 HSP 诱导是加速 AF 诱导的重塑恢复的一个有趣目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验