Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands.
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
J Am Heart Assoc. 2017 Oct 24;6(10):e006458. doi: 10.1161/JAHA.117.006458.
Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF.
Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca-transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca-current reduction), cellular Ca-handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage.
These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate.
蛋白质稳态的脱轨,即蛋白质的产生、功能和分解的动态平衡,对心房颤动(AF)的自我维持特性起着重要作用,AF 是人类最常见的心律不齐。自噬通过降解异常蛋白质和细胞器在蛋白质稳态中发挥重要作用。在此,我们研究了自噬及其激活途径在实验性和临床 AF 中的作用。
HL-1 心房肌细胞的快速起搏导致自噬逐渐显著激活,表现为 LC3B-II 表达增强、自噬流和自噬体形成增加以及 p62 降解,导致 Ca 幅度减小。自噬是在内质网(ER)应激的下游激活的:通过化学伴侣 4-苯丁酸阻断 ER 应激、过表达 ER 伴侣蛋白热休克蛋白 A5 或过表达磷酸化阻断的真核起始因子 2α(eIF2α)突变体可阻止快速起搏的 HL-1 心肌细胞中自噬的激活和 Ca 瞬变丢失。此外,在快速起搏的细胞中抑制 ER 应激可证实其在破坏心肌细胞功能中的作用。体内用苯丁酸钠处理可保护心房快速起搏的犬心肌细胞免受电重构(动作电位时程缩短,L 型 Ca 电流减少)、细胞 Ca 处理/收缩功能障碍以及 ER 应激和自噬;它还可减轻 AF 的进展。最后,持续性 AF 患者的心房组织显示自噬和 ER 应激的激活,与心肌细胞损伤的标志物相关。
这些结果确定了与 ER 应激相关的自噬是 AF 进展的一个重要途径,并证明了 ER 应激抑制剂 4-苯丁酸的潜在治疗作用。