Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
J Physiol. 2011 Sep 15;589(Pt 18):4437-55. doi: 10.1113/jphysiol.2011.214247. Epub 2011 Jul 11.
Ca(2+) influx via Ca(V)1/Ca(V)2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α(1) and cytosolic β is necessary for trafficking Ca(V)1/Ca(V)2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α(1) intracellular I-II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for Ca(V)1/Ca(V)2 channel membrane trafficking. There are hints that other α(1) subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of Ca(V)1.2-α(1C) by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α(1C) into the β-independent Ca(V)3.1-α(1G) channel. Surprisingly, functional analyses demonstrated α(1C) I-II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I-II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α(1C) intracellular domains, with the I-II loop and C-terminus being essential. The results suggest β binding to the α(1C) I-II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I-II loop and retention signals elsewhere.
钙离子内流通过钙通道(Ca(V)1/Ca(V)2)驱动从神经递质传递到肌肉收缩等过程。通过尚未完全了解的机制,将形成孔的α(1)和胞质β组装在一起,对于将 Ca(V)1/Ca(V)2 通道转运到细胞膜表面是必要的。一个普遍的观点认为β结合α(1)的细胞内 I-II 环,掩盖内质网 (ER) 保留信号,作为 Ca(V)1/Ca(V)2 通道膜运输的主要机制。有迹象表明其他α(1)亚基胞质结构域可能发挥重要作用,但它们潜在贡献的性质尚不清楚。我们通过生成嵌合体来评估 Ca(V)1.2-α(1C)的所有细胞内结构域的作用,这些嵌合体具有将α(1C)的所有可能的细胞内环/末端的取代物插入到β非依赖性 Ca(V)3.1-α(1G)通道中的特征。令人惊讶的是,功能分析表明α(1C)的 I-II 环强烈增加了通道的表面密度,而其他胞质结构域则具有相反的竞争作用。丙氨酸扫描诱变确定了一个酸性残基假定的 ER 出口基序,负责 I-II 环介导的通道表面密度增加。β依赖性电流增加是一种新兴特性,需要四个α(1C)细胞内结构域,其中 I-II 环和 C 末端是必需的。结果表明,β与α(1C)的 I-II 环结合导致细胞内结构域的 C 末端依赖性重排,从而改变 I-II 环上的出口信号和其他地方的保留信号之间的力量平衡。