Hokkaido University, Sapporo, Japan.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12271-6. doi: 10.1073/pnas.1108320108. Epub 2011 Jul 11.
The final interprotein electron transfer (ET) in the mammalian respiratory chain, from cytochrome c (Cyt c) to cytochrome c oxidase (CcO) is investigated by (1)H-(15)N heteronuclear single quantum coherence spectral analysis. The chemical shift perturbation in isotope-labeled Cyt c induced by addition of unlabeled CcO indicates that the hydrophobic heme periphery and adjacent hydrophobic amino acid residues of Cyt c dominantly contribute to the complex formation, whereas charged residues near the hydrophobic core refine the orientation of Cyt c to provide well controlled ET. Upon oxidation of Cyt c, the specific line broadening of N-H signals disappeared and high field (1)H chemical shifts of the N-terminal helix were observed, suggesting that the interactions of the N-terminal helix with CcO are reduced by steric constraint in oxidized Cyt c, while the chemical shift perturbations in the C-terminal helix indicate notable interactions of oxidized Cyt c with CcO. These results suggest that the overall affinity of oxidized Cyt c for CcO is significantly, but not very much weaker than that of reduced Cyt c. Thus, electron transfer is gated by dissociation of oxidized Cyt c from CcO, the rate of which is controlled by the affinity of oxidized Cyt c to CcO for providing an appropriate electron transfer rate for the most effective energy coupling. The conformational changes in Lys13 upon CcO binding to oxidized Cyt c, shown by (1)H- and (1)H, (15)N-chemical shifts, are also expected to gate intraprotein ET by a polarity control of heme c environment.
哺乳动物呼吸链中最后一个蛋白间电子转移(ET),即细胞色素 c(Cyt c)到细胞色素 c 氧化酶(CcO)的转移,通过(1)H-(15)N 异核单量子相干谱分析进行研究。未标记的 CcO 加入标记的 Cyt c 后引起的 Cyt c 的同位素位移表明,Cyt c 的疏水性血红素周围和相邻的疏水性氨基酸残基主要有助于复合物的形成,而靠近疏水性核心的带电残基则调整 Cyt c 的取向,以提供良好控制的 ET。在 Cyt c 氧化时,N-H 信号的特定线宽变宽,并且观察到高场(1)H 化学位移的 N-末端螺旋,这表明 N-末端螺旋与 CcO 的相互作用由于氧化 Cyt c 中的空间位阻而减少,而 C-末端螺旋的化学位移位移表明氧化 Cyt c 与 CcO 之间存在显著相互作用。这些结果表明,氧化 Cyt c 与 CcO 的整体亲和力显著降低,但并不是非常低。因此,电子转移被氧化 Cyt c 从 CcO 上的解离所控制,其速率由氧化 Cyt c 与 CcO 的亲和力控制,以提供最有效的能量耦合的适当电子转移速率。结合(1)H 和(1)H,(15)N-化学位移,在 CcO 与氧化 Cyt c 结合时 Lys13 的构象变化也有望通过血红素 c 环境的极性控制来门控蛋白内 ET。