Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla-Spanish National Scientific Council (CSIC), 41092 Seville, Spain.
Magnetic Resonance Center (CERM), Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3041-E3050. doi: 10.1073/pnas.1618008114. Epub 2017 Mar 27.
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome phosphorylation-in particular, at tyrosine 48-is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome by replacing tyrosine 48 with -carboxy-methyl-l-phenylalanine (CMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around CMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome and to develop novel therapeutic approaches based on its prosurvival effects.
线粒体活性的调节使细胞能够适应不断变化的条件并控制氧化应激,其功能障碍可导致缺氧依赖性疾病,如缺血和癌症。尽管细胞色素 c 的磷酸化 - 特别是酪氨酸 48 的磷酸化 - 是线粒体信号的关键调节剂,但它的作用和分子基础仍然未知。在这里,我们通过用 - 羧甲基-L-苯丙氨酸(CMF)取代酪氨酸 48 来模拟细胞色素 c 的磷酸化。由此产生的突变体的 NMR 结构显示 CMF 周围的构象发生了显著变化,增强了动力学,这可以解释其功能观察到的变化:磷酸模拟突变会损害细胞色素 c 在呼吸复合物之间的扩散,增强血红素蛋白过氧化物酶和活性氧物质清除活性,并阻碍半胱天冬酶依赖性细胞凋亡。我们的研究结果为进一步研究磷酸化细胞色素 c 对线粒体活性的调节以及基于其生存促进作用开发新的治疗方法提供了框架。