Suppr超能文献

用于蛋白质 β-转角预测的深度密集 inception 网络。

A deep dense inception network for protein beta-turn prediction.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.

Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri.

出版信息

Proteins. 2020 Jan;88(1):143-151. doi: 10.1002/prot.25780. Epub 2019 Jul 23.

Abstract

Beta-turn prediction is useful in protein function studies and experimental design. Although recent approaches using machine-learning techniques such as support vector machine (SVM), neural networks, and K nearest neighbor have achieved good results for beta-turn prediction, there is still significant room for improvement. As previous predictors utilized features in a sliding window of 4-20 residues to capture interactions among sequentially neighboring residues, such feature engineering may result in incomplete or biased features and neglect interactions among long-range residues. Deep neural networks provide a new opportunity to address these issues. Here, we proposed a deep dense inception network (DeepDIN) for beta-turn prediction, which takes advantage of the state-of-the-art deep neural network design of dense networks and inception networks. A test on a recent BT6376 benchmark data set shows that DeepDIN outperformed the previous best tool BetaTPred3 significantly in both the overall prediction accuracy and the nine-type beta-turn classification accuracy. A tool, called MUFold-BetaTurn, was developed, which is the first beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html.

摘要

β转角预测在蛋白质功能研究和实验设计中很有用。尽管最近使用机器学习技术(如支持向量机(SVM)、神经网络和 K 最近邻)的方法在β转角预测方面取得了很好的结果,但仍有很大的改进空间。由于以前的预测器使用 4-20 个残基的滑动窗口中的特征来捕获顺序相邻残基之间的相互作用,因此这种特征工程可能导致不完整或有偏差的特征,并忽略长程残基之间的相互作用。深度神经网络为解决这些问题提供了新的机会。在这里,我们提出了一种用于β转角预测的深度密集初始网络(DeepDIN),它利用了密集网络和初始网络的最先进的深度神经网络设计。在最近的 BT6376 基准数据集上的测试表明,DeepDIN 在整体预测准确性和九种β转角分类准确性方面均显著优于以前的最佳工具 BetaTPred3。开发了一个名为 MUFold-BetaTurn 的工具,它是第一个利用深度神经网络的β转角预测工具。该工具可以在 http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html 下载。

相似文献

4
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.

引用本文的文献

2
A Perspective on the (Rise and Fall of) Protein β-Turns.蛋白质β-转角的兴衰研究展望
Int J Mol Sci. 2022 Oct 14;23(20):12314. doi: 10.3390/ijms232012314.

本文引用的文献

4
A primer on deep learning in genomics.深度学习在基因组学中的应用简介。
Nat Genet. 2019 Jan;51(1):12-18. doi: 10.1038/s41588-018-0295-5. Epub 2018 Nov 26.
10
Deep learning for computational biology.用于计算生物学的深度学习。
Mol Syst Biol. 2016 Jul 29;12(7):878. doi: 10.15252/msb.20156651.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验