Suppr超能文献

分子流行病学研究中缺失数据的处理。

The handling of missing data in molecular epidemiology studies.

机构信息

Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA 94304, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1571-9. doi: 10.1158/1055-9965.EPI-10-1311. Epub 2011 Jul 12.

Abstract

Molecular epidemiology studies face a missing data problem, as biospecimen or imaging data are often collected on only a proportion of subjects eligible for study. We investigated all molecular epidemiology studies published as Research Articles, Short Communications, or Null Results in Brief in Cancer Epidemiology, Biomarkers & Prevention from January 1, 2009, to March 31, 2010, to characterize the extent that missing data were present and to elucidate how the issue was addressed. Of 278 molecular epidemiology studies assessed, most (95%) had missing data on a key variable (66%) and/or used availability of data (often, but not always the biomarker data) as inclusion criterion for study entry (45%). Despite this, only 10% compared subjects included in the analysis with those excluded from the analysis and 88% with missing data conducted a complete-case analysis, a method known to yield biased and inefficient estimates when the data are not missing completely at random. Our findings provide evidence that missing data methods are underutilized in molecular epidemiology studies, which may deleteriously affect the interpretation of results. We provide practical guidelines for the analysis and interpretation of molecular epidemiology studies with missing data.

摘要

分子流行病学研究面临着数据缺失的问题,因为生物样本或影像学数据通常仅在符合研究条件的一部分受试者中收集。我们调查了 2009 年 1 月 1 日至 2010 年 3 月 31 日期间在《癌症流行病学、生物标志物与预防》杂志上发表的所有作为研究文章、短通讯或无效结果简报的分子流行病学研究,以描述缺失数据的存在程度,并阐明如何解决这个问题。在评估的 278 项分子流行病学研究中,大多数(95%)在关键变量(66%)上存在缺失数据,或者将数据的可用性(通常,但并非总是生物标志物数据)作为研究入组的纳入标准(45%)。尽管如此,只有 10%的研究将纳入分析的受试者与排除在分析之外的受试者进行了比较,88%有缺失数据的研究进行了完全病例分析,当数据不是完全随机缺失时,这种方法会产生有偏差和低效的估计。我们的研究结果表明,缺失数据方法在分子流行病学研究中未得到充分利用,这可能会对结果的解释产生不利影响。我们为分析和解释具有缺失数据的分子流行病学研究提供了实用的指南。

相似文献

1
The handling of missing data in molecular epidemiology studies.分子流行病学研究中缺失数据的处理。
Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1571-9. doi: 10.1158/1055-9965.EPI-10-1311. Epub 2011 Jul 12.
4
Incomplete data: what you don't know might hurt you.数据不完整:你不知道的可能会伤害你。
Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1567-70. doi: 10.1158/1055-9965.EPI-11-0505. Epub 2011 Jul 12.

引用本文的文献

本文引用的文献

5
Postmenopausal levels of endogenous sex hormones and risk of colorectal cancer.绝经后内源性性激素水平与结直肠癌风险
Cancer Epidemiol Biomarkers Prev. 2009 Jan;18(1):275-81. doi: 10.1158/1055-9965.EPI-08-0777.
8
Use of multiple imputation in the epidemiologic literature.多重填补法在流行病学文献中的应用。
Am J Epidemiol. 2008 Aug 15;168(4):355-7. doi: 10.1093/aje/kwn071. Epub 2008 Jun 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验