El-Masri Maher M, Fox-Wasylyshyn Susan M
Faculty of Nursing, University of Windsor, Health Education Centre, Ontario, Canada.
Can J Nurs Res. 2005 Dec;37(4):156-71.
Missing data is a common issue in research that, if improperly handled, can lead to inaccurate conclusions about populations. A variety of statistical techniques are available to treat missing data. Some of these are simple while others are conceptually and mathematically complex. The purpose of this paper is to provide the novice researcher with an introductory conceptual overview of the issue of missing data. The authors discuss patterns of missing data, common missing-data handling techniques, and issues associated with missing data. Techniques discussed include listwise deletion, pairwise deletion, case mean substitution, sample mean substitution, group mean substitution, regression imputation, and estimation maximization.
数据缺失是研究中常见的问题,如果处理不当,可能会导致对总体得出不准确的结论。有多种统计技术可用于处理数据缺失问题。其中一些技术很简单,而另一些在概念和数学上则很复杂。本文的目的是为新手研究人员提供有关数据缺失问题的概念性入门概述。作者讨论了数据缺失的模式、常见的数据缺失处理技术以及与数据缺失相关的问题。所讨论的技术包括逐行删除、成对删除、个案均值替换、样本均值替换、组均值替换、回归插补和期望最大化。