Laboratory of BioMedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
J Assoc Res Otolaryngol. 2011 Dec;12(6):681-96. doi: 10.1007/s10162-011-0281-4. Epub 2011 Jul 13.
In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.
为了提高中耳(ME)有限元建模(FEM)的逼真度,需要综合而精确的形态学数据。迄今为止,微尺度 X 射线计算机断层扫描(μCT)记录已被用作 ME 听小骨 FEM 模型的几何输入数据。此前,人们也曾尝试获取 ME 软组织结构的这些数据。然而,由于软组织的 X 射线吸收率低,这些图像的质量受到限制。另一种流行的方法是使用组织切片作为 3D 模型的数据,这些切片的面内分辨率很高,但该技术具有破坏性,而且切片的配准也很困难。我们将高分辨率 μCT 记录的数据与高分辨率正交平面荧光光学切片显微镜(OPFOS)的数据相结合,这些数据均来自同一只沙鼠标本。最先进的 μCT 可提供听小骨和其他 ME 骨结构的 3D 形状的高分辨率数据,而 OPFOS 设备生成的骨和 ME 软组织结构的数据质量也前所未有。这两种技术都是层析成像和非破坏性的,并且可以提供自动对齐的虚拟切片集。来自不同技术的数据集需要相互注册。通过结合这两个数据集,我们获得了沙鼠 ME 中所有功能组件的完整高分辨率形态模型。生成的 3D 模型可以方便地导入 FEM 软件,并免费提供给研究社区。在本文中,我们将讨论所使用的方法,展示得到的合并模型,并讨论软组织结构(如肌肉和韧带)的形态特征。