Suppr超能文献

改进生物标志物蛋白在临床样本宽质量范围飞行时间质谱中的信号处理和归一化。

Improved signal processing and normalization for biomarker protein detection in broad-mass-range TOF mass spectra from clinical samples.

机构信息

William and Mary Research Institute (WMRI), College of William and Mary (CWM), Williamsburg, VA 23187-8795, USA.

出版信息

Proteomics Clin Appl. 2011 Aug;5(7-8):440-7. doi: 10.1002/prca.201000095. Epub 2011 Jul 13.

Abstract

PURPOSE

To demonstrate robust detection of biomarkers in broad-mass-range TOF-MS data.

EXPERIMENTAL DESIGN

Spectra were obtained for two serum protein profiling studies: (i) 2-200 kDa for 132 patients, 67 healthy and 65 diagnosed as having adult T-cell leukemia and (ii) 2-100 kDa for 140 patients, 70 pairs, each with matched prostate-specific antigen (PSA) levels and biopsy-confirmed diagnoses of one benign and one prostate cancer. Signal processing was performed on raw spectra and peak data were normalized using four methods. Feature selection was performed using Bayesian Network Analysis and a classifier was tested on withheld data. Identification of candidate biomarkers was pursued.

RESULTS

Integrated peak intensities were resolved over full spectra. Normalization using local noise values was superior to global methods in reducing peak correlations, reducing replicate variability and improving feature selection stability. For the leukemia data set, potential disease biomarkers were detected and were found to be predictive for withheld data. Preliminary assignments of protein IDs were consistent with published results and LC-MS/MS identification. No prostate-specific-antigen-independent biomarkers were detected in the prostate cancer data set.

CONCLUSIONS AND CLINICAL RELEVANCE

Signal processing, local signal-to-noise (SNR) normalization and Bayesian Network Analysis feature selection facilitate robust detection and identification of biomarker proteins in broad-mass-range clinical TOF-MS data.

摘要

目的

证明在宽质量范围的飞行时间质谱数据中对生物标志物进行稳健检测的能力。

实验设计

对两项血清蛋白质谱分析研究进行了光谱采集:(i)132 例患者,67 例健康人和 65 例成人 T 细胞白血病患者,质量范围为 2-200 kDa;(ii)140 例患者,70 对,每位患者的 PSA 水平均匹配,且活检确诊为良性和前列腺癌各一例,质量范围为 2-100 kDa。对原始光谱进行信号处理,并使用四种方法对峰数据进行归一化。使用贝叶斯网络分析进行特征选择,并在保留数据上测试分类器。探索候选生物标志物的鉴定。

结果

在全谱范围内解析了积分峰强度。与全局方法相比,使用局部噪声值进行归一化可以减少峰相关性,降低重复间的变异性,并提高特征选择的稳定性。在白血病数据集上,检测到潜在的疾病生物标志物,并发现对保留数据具有预测能力。初步的蛋白质 ID 分配与已发表的结果和 LC-MS/MS 鉴定一致。在前列腺癌数据集上未检测到与前列腺特异性抗原无关的生物标志物。

结论和临床相关性

信号处理、局部信噪比(SNR)归一化和贝叶斯网络分析特征选择有助于在宽质量范围的临床飞行时间质谱数据中稳健地检测和鉴定生物标志物蛋白。

相似文献

本文引用的文献

10
Scale-based normalization of spectral data.基于尺度的光谱数据归一化
Cancer Biomark. 2006;2(3-4):135-44. doi: 10.3233/cbm-2006-23-405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验