Suppr超能文献

铜绿假单胞菌异柠檬酸-丙酮酸裂解酶催化的 pH 依赖性:对过渡态稳定的影响及赖氨酸 42 的作用。

pH Dependence of catalysis by Pseudomonas aeruginosa isochorismate-pyruvate lyase: implications for transition state stabilization and the role of lysine 42.

机构信息

Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.

出版信息

Biochemistry. 2011 Aug 23;50(33):7198-207. doi: 10.1021/bi200599j. Epub 2011 Jul 22.

Abstract

An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ∼100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.

摘要

来自铜绿假单胞菌(PchB)的具有副鸽氨酸酶活性的异分支酸-丙酮酸裂合酶部分通过稳定反应构象和静电过渡态稳定来实现两种周环反应的催化。当活性位点环赖氨酸 42 突变为组氨酸时,酶会表现出与组氨酸去质子化时催化能力丧失相对应的 pH 依赖性。结构数据表明,这种变化不是由于活性位点结构的变化,而是由于该关键位点电荷的差异。在高 pH 下,K42H 侧链失去正电荷,酶保留裂解酶活性,但催化效率降低约 100 倍,且检测不到鸽氨酸酶活性。我们提出,底物组织和静电过渡态稳定都有助于催化。然而,催化的主要反应途径取决于反应条件,这些条件影响酶活性位点氨基酸侧链的静电性质。

相似文献

7
Pericyclic reactions catalyzed by chorismate-utilizing enzymes.由支链氨基酸利用酶催化的周环反应。
Biochemistry. 2011 Sep 6;50(35):7476-83. doi: 10.1021/bi2009739. Epub 2011 Aug 12.

引用本文的文献

8
Pericyclic reactions catalyzed by chorismate-utilizing enzymes.由支链氨基酸利用酶催化的周环反应。
Biochemistry. 2011 Sep 6;50(35):7476-83. doi: 10.1021/bi2009739. Epub 2011 Aug 12.

本文引用的文献

2
PHENIX: a comprehensive Python-based system for macromolecular structure solution.PHENIX:一个基于Python的用于大分子结构解析的综合系统。
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
6
Microbial production of (+)-trans-isochorismic acid.(+)-反式异分支酸的微生物生产。
Biotechnol Bioeng. 1995 Feb 20;45(4):285-91. doi: 10.1002/bit.260450402.
8
Free-energy landscape of enzyme catalysis.酶催化的自由能景观。
Biochemistry. 2008 Mar 18;47(11):3317-21. doi: 10.1021/bi800049z. Epub 2008 Feb 26.
9
High-accuracy computation of reaction barriers in enzymes.酶中反应势垒的高精度计算。
Angew Chem Int Ed Engl. 2006 Oct 20;45(41):6856-9. doi: 10.1002/anie.200602711.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验