Suppr超能文献

关联 SHAPE 特征与三维 RNA 结构。

Correlating SHAPE signatures with three-dimensional RNA structures.

机构信息

Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.

出版信息

RNA. 2011 Sep;17(9):1688-96. doi: 10.1261/rna.2640111. Epub 2011 Jul 13.

Abstract

Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a facile technique for quantitative analysis of RNA secondary structure. In general, low SHAPE signal values indicate Watson-Crick base-pairing, and high values indicate positions that are single-stranded within the RNA structure. However, the relationship of SHAPE signals to structural properties such as non-Watson-Crick base-pairing or stacking has thus far not been thoroughly investigated. Here, we present results of SHAPE experiments performed on several RNAs with published three-dimensional structures. This strategy allows us to analyze the results in terms of correlations between chemical reactivities and structural properties of the respective nucleotide, such as different types of base-pairing, stacking, and phosphate-backbone interactions. We find that the RNA SHAPE signal is strongly correlated with cis-Watson-Crick/Watson-Crick base-pairing and is to a remarkable degree not dependent on other structural properties with the exception of stacking. We subsequently generated probabilistic models that estimate the likelihood that a residue with a given SHAPE score participates in base-pairing. We show that several models that take SHAPE scores of adjacent residues into account perform better in predicting base-pairing compared with individual SHAPE scores. This underscores the context sensitivity of SHAPE and provides a framework for an improved interpretation of the response of RNA to chemical modification.

摘要

选择性 2'-羟基酰化分析引物延伸 (SHAPE) 是一种定量分析 RNA 二级结构的简便技术。一般来说,低 SHAPE 信号值表示 Watson-Crick 碱基配对,而高值表示 RNA 结构中单链的位置。然而,到目前为止,SHAPE 信号与非 Watson-Crick 碱基配对或堆积等结构特性之间的关系尚未得到彻底研究。在这里,我们展示了在具有已发表三维结构的几种 RNA 上进行的 SHAPE 实验的结果。该策略允许我们根据各自核苷酸的结构特性与化学反应性之间的相关性来分析结果,例如不同类型的碱基配对、堆积和磷酸骨架相互作用。我们发现 RNA SHAPE 信号与顺式 Watson-Crick/Watson-Crick 碱基配对强烈相关,并且在很大程度上不依赖于其他结构特性,除了堆积。随后,我们生成了概率模型,估计具有给定 SHAPE 分数的残基参与碱基配对的可能性。我们表明,与单独的 SHAPE 分数相比,考虑到相邻残基的 SHAPE 分数的几个模型在预测碱基配对方面表现更好。这突显了 SHAPE 的上下文敏感性,并为改进 RNA 对化学修饰的响应的解释提供了框架。

相似文献

1
Correlating SHAPE signatures with three-dimensional RNA structures.
RNA. 2011 Sep;17(9):1688-96. doi: 10.1261/rna.2640111. Epub 2011 Jul 13.
3
Carbodiimide reagents for the chemical probing of RNA structure in cells.
RNA. 2019 Jan;25(1):135-146. doi: 10.1261/rna.067561.118. Epub 2018 Nov 2.
5
Integrating chemical footprinting data into RNA secondary structure prediction.
PLoS One. 2012;7(10):e45160. doi: 10.1371/journal.pone.0045160. Epub 2012 Oct 16.
6
Exploring RNA structural codes with SHAPE chemistry.
Acc Chem Res. 2011 Dec 20;44(12):1280-91. doi: 10.1021/ar200051h. Epub 2011 May 26.
7
Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).
Methods Mol Biol. 2016;1490:135-62. doi: 10.1007/978-1-4939-6433-8_9.
8
Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
Acc Chem Res. 2021 May 4;54(9):2110-2120. doi: 10.1021/acs.accounts.0c00734. Epub 2021 Feb 16.
9
DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
J Phys Chem B. 2012 Oct 11;116(40):12088-94. doi: 10.1021/jp304260t. Epub 2012 Sep 26.
10
The role of nucleobase interactions in RNA structure and dynamics.
Nucleic Acids Res. 2014 Dec 1;42(21):13306-14. doi: 10.1093/nar/gku972. Epub 2014 Oct 29.

引用本文的文献

1
Consistent features observed in structural probing data of eukaryotic RNAs.
NAR Genom Bioinform. 2025 Jan 30;7(1):lqaf001. doi: 10.1093/nargab/lqaf001. eCollection 2025 Mar.
2
RNA:RNA interaction in ternary complexes resolved by chemical probing.
RNA. 2023 Mar;29(3):317-329. doi: 10.1261/rna.079190.122. Epub 2022 Dec 20.
3
Advances and opportunities in RNA structure experimental determination and computational modeling.
Nat Methods. 2022 Oct;19(10):1193-1207. doi: 10.1038/s41592-022-01623-y. Epub 2022 Oct 6.
6
Predicting RNA SHAPE scores with deep learning.
RNA Biol. 2020 Sep;17(9):1324-1330. doi: 10.1080/15476286.2020.1760534. Epub 2020 May 31.
8
DUETT quantitatively identifies known and novel events in nascent RNA structural dynamics from chemical probing data.
Bioinformatics. 2019 Dec 15;35(24):5103-5112. doi: 10.1093/bioinformatics/btz449.
10
High-throughput determination of RNA structures.
Nat Rev Genet. 2018 Oct;19(10):615-634. doi: 10.1038/s41576-018-0034-x.

本文引用的文献

1
The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function.
J Biol Chem. 2010 Dec 31;285(53):42097-104. doi: 10.1074/jbc.M110.182840. Epub 2010 Oct 26.
2
SHAPE-directed RNA secondary structure prediction.
Methods. 2010 Oct;52(2):150-8. doi: 10.1016/j.ymeth.2010.06.007. Epub 2010 Jun 8.
3
The role of mRNA structure in translational control in bacteria.
RNA Biol. 2009 Apr-Jun;6(2):153-60. doi: 10.4161/rna.6.2.8047.
4
Structure and function of regulatory RNA elements: ribozymes that regulate gene expression.
Biochim Biophys Acta. 2009 Sep-Oct;1789(9-10):634-41. doi: 10.1016/j.bbagrm.2009.09.006. Epub 2009 Sep 23.
5
Architecture and secondary structure of an entire HIV-1 RNA genome.
Nature. 2009 Aug 6;460(7256):711-6. doi: 10.1038/nature08237.
7
Classification and energetics of the base-phosphate interactions in RNA.
Nucleic Acids Res. 2009 Aug;37(15):4898-918. doi: 10.1093/nar/gkp468. Epub 2009 Jun 14.
8
Structural and functional modules in RNA interference.
Curr Opin Struct Biol. 2009 Jun;19(3):286-93. doi: 10.1016/j.sbi.2009.04.006. Epub 2009 May 26.
9
VARNA: Interactive drawing and editing of the RNA secondary structure.
Bioinformatics. 2009 Aug 1;25(15):1974-5. doi: 10.1093/bioinformatics/btp250. Epub 2009 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验