文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小分子通过靶向 ROS 应激反应选择性杀死癌细胞。

Selective killing of cancer cells by a small molecule targeting the stress response to ROS.

机构信息

Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.

出版信息

Nature. 2011 Jul 13;475(7355):231-4. doi: 10.1038/nature10167.


DOI:10.1038/nature10167
PMID:21753854
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3316487/
Abstract

Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.

摘要

恶性转化是由癌基因获得功能突变和肿瘤抑制基因失活突变驱动的,导致细胞失控,这通常与增强的细胞应激有关(例如氧化应激、复制应激、代谢应激和蛋白毒性应激以及 DNA 损伤)。为了使癌细胞存活,它们需要适应这种应激表型,因此癌细胞可能会依赖于通常在正常细胞中不起这种重要作用的非癌基因。因此,在转化基因型的背景下靶向这些非癌基因依赖性可能会导致合成致死相互作用并选择性杀死癌细胞。在这里,我们使用基于细胞的小分子筛选和定量蛋白质组学方法,非偏见地鉴定出一种选择性杀死癌细胞而不杀死正常细胞的小分子。胡椒碱可增加具有癌症基因型的癌细胞和正常细胞中的活性氧 (ROS) 水平和细胞凋亡,但对快速或缓慢分裂的原发性正常细胞几乎没有影响。在接受胡椒碱治疗的小鼠异种移植肿瘤模型中观察到显著的抗肿瘤作用,在正常小鼠中没有明显的毒性。此外,胡椒碱能有效抑制自发形成的恶性乳腺肿瘤及其在小鼠中的转移生长。我们的结果表明,小分子通过靶向癌症基因型表达引起的氧化应激反应获得的非癌基因共依赖性,能够选择性地诱导具有癌症基因型的细胞发生细胞凋亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/70bc2694049d/nihms-313002-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/e913385a23b0/nihms-313002-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/4bf3763d5216/nihms-313002-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/a0b6b2e2bc35/nihms-313002-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/70bc2694049d/nihms-313002-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/e913385a23b0/nihms-313002-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/4bf3763d5216/nihms-313002-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/a0b6b2e2bc35/nihms-313002-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b35/3316487/70bc2694049d/nihms-313002-f0004.jpg

相似文献

[1]
Selective killing of cancer cells by a small molecule targeting the stress response to ROS.

Nature. 2011-7-13

[2]
Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer.

Oncotarget. 2014-10-15

[3]
Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death.

ACS Chem Biol. 2013-3-25

[4]
Heme oxygenase-1 determines the differential response of breast cancer and normal cells to piperlongumine.

Mol Cells. 2015-4

[5]
Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells.

Chem Res Toxicol. 2015-5-18

[6]
Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells.

Cell Oncol (Dordr). 2019-9-6

[7]
Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells.

J Cancer Res Clin Oncol. 2014-12

[8]
The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress.

Cell Death Dis. 2019-8-8

[9]
Piperlongumine and immune cytokine TRAIL synergize to promote tumor death.

Sci Rep. 2015-5-18

[10]
Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation.

Biochem Biophys Res Commun. 2013-6-22

引用本文的文献

[1]
Iron-Catalyzed Carbonylation Reactions with Carbon Monoxide.

Angew Chem Int Ed Engl. 2025-9-1

[2]
Food-derived compounds targeting ferroptosis for cancer therapy: from effects to mechanisms.

Front Oncol. 2025-6-9

[3]
Herbicidal Activity and Metabolic Profiling of Jacq. Leachates.

J Agric Food Chem. 2025-4-9

[4]
The Two Faces of Reactive Oxygen Species in Cancer.

Annu Rev Cancer Biol. 2017-3

[5]
MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin. 2025-5

[6]
Cellular senescence in the tumor with a bone niche microenvironment: friend or foe?

Clin Exp Med. 2025-1-23

[7]
Gold nanorod-based engineered nanogels for cascade-amplifying photothermo-enzymatic synergistic therapy.

J Pharm Anal. 2024-12

[8]
Combination of methanolic-extract with cisplatin can induce antioxidant activity and apoptosis in HeLa and Caski cells.

Front Pharmacol. 2024-12-4

[9]
Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy.

Nat Commun. 2024-8-8

[10]
Current advances and future trends of hormesis in disease.

NPJ Aging. 2024-5-15

本文引用的文献

[1]
The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression.

Nat Genet. 2011-2-13

[2]
Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic.

CA Cancer J Clin. 2011-1-4

[3]
An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1.

J Biol Chem. 2010-8-26

[4]
Empirical Bayes analysis of quantitative proteomics experiments.

PLoS One. 2009-10-14

[5]
Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?

AAPS J. 2009-9

[6]
Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?

Nat Rev Drug Discov. 2009-7

[7]
Principles of cancer therapy: oncogene and non-oncogene addiction.

Cell. 2009-3-6

[8]
Identifying the proteins to which small-molecule probes and drugs bind in cells.

Proc Natl Acad Sci U S A. 2009-3-24

[9]
Association of reactive oxygen species levels and radioresistance in cancer stem cells.

Nature. 2009-4-9

[10]
Human carbonyl reductase 1 is an S-nitrosoglutathione reductase.

J Biol Chem. 2008-12-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索