文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于紫磷的纳米系统的催化活性及代谢物在肿瘤治疗中的作用。

Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy.

作者信息

Zhang Hanjie, Zhang Yitong, Zhang Yushi, Li Hanyue, Ou Meitong, Yu Yongkang, Zhang Fan, Yin Huijuan, Mao Zhuo, Mei Lin

机构信息

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.

出版信息

Nat Commun. 2024 Aug 8;15(1):6783. doi: 10.1038/s41467-024-50769-0.


DOI:10.1038/s41467-024-50769-0
PMID:39117634
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11310355/
Abstract

Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O) and hydrogen peroxide (HO) through the computational simulation and experiments. Considering the short of O and HO at the tumor site, we utilize calcium peroxide (CaO) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O provided by CaO can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.

摘要

尽管纳米催化医学在肿瘤治疗中已展现出其优势,但其效果在很大程度上依赖于底物浓度,且代谢途径仍不明确。我们发现,紫色磷量子点(VPQDs)无需外部刺激即可催化活性氧(ROS)的产生,并且通过计算模拟和实验证实催化底物为氧气(O)和过氧化氢(HO)。考虑到肿瘤部位O和HO的短缺,我们利用过氧化钙(CaO)为VPQDs提供催化底物,并与它们一起构建纳米颗粒,命名为VPCaNPs。VPCaNPs可在肿瘤细胞中诱导氧化应激,其特征尤其表现为羟基自由基和超氧自由基显著增加,这会对细胞的结构和功能造成实质性损害,最终导致细胞凋亡。有趣的是,CaO提供的O可缓慢降解VPQDs,其降解产物磷酸盐以及CaO产生的钙离子可促进肿瘤钙化。在给予VPCaNPs的动物中还观察到抗肿瘤免疫激活和较少的转移。总之,我们的研究揭示了VPQDs作为产生细胞毒性ROS的催化剂的抗肿瘤活性,且其降解产物可促进肿瘤钙化,为肿瘤治疗提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/0805400babcc/41467_2024_50769_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/3096d6d939ba/41467_2024_50769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/bf90c17a2cf6/41467_2024_50769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/3f4f05e2a94e/41467_2024_50769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/a0941db34cc5/41467_2024_50769_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/98073b4ec75b/41467_2024_50769_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/db5096cf4578/41467_2024_50769_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/d4e59faea659/41467_2024_50769_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/0805400babcc/41467_2024_50769_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/3096d6d939ba/41467_2024_50769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/bf90c17a2cf6/41467_2024_50769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/3f4f05e2a94e/41467_2024_50769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/a0941db34cc5/41467_2024_50769_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/98073b4ec75b/41467_2024_50769_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/db5096cf4578/41467_2024_50769_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/d4e59faea659/41467_2024_50769_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ea/11310355/0805400babcc/41467_2024_50769_Fig8_HTML.jpg

相似文献

[1]
Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy.

Nat Commun. 2024-8-8

[2]
Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

Theranostics. 2020

[3]
A ROS storm generating nanocomposite for enhanced chemodynamic therapy through HO self-supply, GSH depletion and calcium overload.

Nanoscale. 2024-5-2

[4]
Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy.

Nat Commun. 2021-9-2

[5]
Engineering HO Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy.

ACS Appl Mater Interfaces. 2024-5-15

[6]
Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy.

Theranostics. 2019-9-23

[7]
Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy.

Adv Mater. 2021-2

[8]
A CaO @Tannic Acid-Fe Nanoconjugate for Enhanced Chemodynamic Tumor Therapy.

ChemMedChem. 2021-7-20

[9]
Metal-Free Carbon Co-Catalysts for Up-Conversion Photo-Induced Catalytic Cancer Therapy.

Adv Mater. 2024-10

[10]
Nanozyme-catalyzed oxygen release from calcium peroxide nanoparticles for accelerated hypoxia relief and image-guided super-efficient photodynamic therapy.

Biomater Sci. 2020-5-19

引用本文的文献

[1]
Catalytic Nitrous Oxide Degradation with Group 15 Clusters.

J Am Chem Soc. 2025-8-20

[2]
Sono-activable and biocatalytic 3D-printed scaffolds for intelligently sequential therapies in osteosarcoma eradication and defect regeneration.

Nat Commun. 2025-7-4

[3]
NIR-responsive cisplatin nanoparticles for synergistic chemo-photothermal therapy of oral squamous cell carcinoma.

RSC Adv. 2025-5-22

[4]
Dopant-Regulated Piezocatalysts Evoke Sonopiezoelectric and Enzymatic PANoptosis for Synergistic Cancer Therapy.

Adv Sci (Weinh). 2025-5

[5]
Biomimetic nanoparticles with red blood cell membranes for enhanced photothermal and immunotherapy for tumors.

RSC Adv. 2024-10-17

[6]
Radical-Scavenging Violet Phosphorus Nanosheets for Attenuating Hyperinflammation and Promoting Infected Wound Healing.

Adv Sci (Weinh). 2024-12

本文引用的文献

[1]
Biomimetic piezoelectric nanomaterial-modified oral microrobots for targeted catalytic and immunotherapy of colorectal cancer.

Sci Adv. 2024-5-10

[2]
Cell surface patching via CXCR4-targeted nanothreads for cancer metastasis inhibition.

Nat Commun. 2024-3-29

[3]
"Three-in-One" Nanozyme Composite for Augmented Cascade Catalytic Tumor Therapy.

Adv Mater. 2024-2

[4]
Ruthenium-Based Photoactivated Chemotherapy.

J Am Chem Soc. 2023-11-1

[5]
Exploring the Enhanced Catalytic Activity of Pt Nanoparticles Generated on the Red Phosphorus/Graphitic Carbon Nitride Binary Heterojunctions in the Photo-assisted Hydrolysis of Ammonia Borane.

ACS Appl Mater Interfaces. 2023-10-18

[6]
Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy.

Nat Commun. 2023-8-23

[7]
Multienzyme-Mimicking LaCoO Nanotrigger for Programming Cancer-Cell Pyroptosis.

Adv Mater. 2023-9

[8]
Self-Propelled Janus Nanocatalytic Robots Guided by Magnetic Resonance Imaging for Enhanced Tumor Penetration and Therapy.

J Am Chem Soc. 2023-5-24

[9]
A Forward Vision for Chemodynamic Therapy: Issues and Opportunities.

Angew Chem Int Ed Engl. 2023-2-6

[10]
Hydroxyl radicals in natural waters: Light/dark mechanisms, changes and scavenging effects.

Sci Total Environ. 2023-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索