Suppr超能文献

利用 MODIS 和 GOSAT 数据评估全球二氧化碳浓度。

Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

机构信息

Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

出版信息

Sensors (Basel). 2012 Nov 26;12(12):16368-89. doi: 10.3390/s121216368.

Abstract

Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

摘要

二氧化碳(CO2)是大气中最重要的温室气体(GHG),也是导致全球变暖的主要因素。CO2 浓度数据通常是从地面观测站或少量卫星获得的。由于观测数量有限,卫星数据的时间序列较短,因此很难在区域或全球范围内长期监测 CO2 浓度。使用遥感数据(如高级甚高分辨率辐射计(AVHRR)或中等分辨率成像光谱仪(MODIS)数据)可以克服这些问题,特别是在 CO2 浓度观测站密度较低的地区。本研究中,我们基于 MODIS 的温度(MOD11C3)、植被覆盖(MOD13C2 和 MOD15A2)和生产力(MOD17A2)开发了一个模型(我们称之为 TVP 模型),以评估全球 CO2 浓度。我们假设来自温室气体观测卫星(GOSAT)上的热和近红外传感器用于碳观测(TANSO)的 CO2 浓度是真实值,并使用这些值来检查 TVP 模型的准确性。结果表明,TVP 模型在不同大陆的准确性不同:欧亚大陆(RMSE=1.16)和南美洲(RMSE=1.17)的最大皮尔逊相关系数(R2)为 0.75;澳大利亚的 R2 最低,为 0.57(RMSE=0.73)。与 TANSO 观测的 CO2 浓度(XCO2)相比,我们发现全球的准确度在-2.56~3.14 ppm 之间。还分析并确定了 TVP 模型不确定性的潜在来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1293/3571787/f984bae05519/sensors-12-16368f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验