School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
Leibniz-Institut für Molekulare Pharmakologie and Neurocure Initiative Charité Universitäts Medizin, 13125 Berlin, Germany.
J Biol Chem. 2011 Sep 2;286(35):31043-31054. doi: 10.1074/jbc.M111.262014. Epub 2011 Jul 14.
Nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits assemble in two alternate stoichiometries to produce (α4β2)(2)α4 and (α4β2)(2)β2, which display different agonist sensitivities. Functionally relevant agonist binding sites are thought to be located at α4(+)/β2(-) subunit interfaces, but because these interfaces are present in both receptor isoforms, it is unlikely that they account for differences in agonist sensitivities. In contrast, incorporation of either α4 or β2 as auxiliary subunits produces isoform-specific α4(+)/α4(-) or β2(+)/β2(-) interfaces. Using fully concatenated (α4β2)(2)α4 nAChRs in conjunction with structural modeling, chimeric receptors, and functional mutagenesis, we have identified an additional site at the α4(+)/α4(-) interface that accounts for isoform-specific agonist sensitivity of the (α4β2)(2)α4 nAChR. The additional site resides in a region that also contains a potentiating Zn(2+) site but is engaged by agonists to contribute to receptor activation. By engineering α4 subunits to provide a free cysteine in loop C at the α4(+)α4(-) interface, we demonstrated that the acetylcholine responses of the mutated receptors are attenuated or enhanced, respectively, following treatment with the sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate or aminoethyl methanethiosulfonate. The findings suggest that agonist occupation of the site at the α4(+)/(α4(-) interface leads to channel gating through a coupling mechanism involving loop C. Overall, we propose that the additional agonist site at the α4(+)/α4(-) interface, when occupied by agonist, contributes to receptor activation and that this additional contribution underlies the agonist sensitivity signature of (α4β2)(2)α4 nAChRs.
烟碱型乙酰胆碱受体 (nAChR) α4 和 β2 亚基以两种交替的化学计量比组装,产生 (α4β2)(2)α4 和 (α4β2)(2)β2,它们显示出不同的激动剂敏感性。功能相关的激动剂结合位点被认为位于 α4(+)/β2(-)亚基界面,但由于这些界面存在于两种受体同工型中,它们不太可能解释激动剂敏感性的差异。相比之下,α4 或 β2 的掺入作为辅助亚基产生同工型特异性的 α4(+)/α4(-)或 β2(+)/β2(-)界面。使用完全连接的 (α4β2)(2)α4 nAChR 结合结构建模、嵌合受体和功能突变,我们在 α4(+)/α4(-)界面上鉴定了一个额外的位点,该位点解释了 (α4β2)(2)α4 nAChR 的同工型特异性激动剂敏感性。该附加位点位于包含增强 Zn(2+) 位点的区域,但与激动剂结合以有助于受体激活。通过对 α4 亚基进行工程设计,在 α4(+)α4(-)界面的环 C 处提供一个游离半胱氨酸,我们证明,突变受体的乙酰胆碱反应分别在经巯基试剂 [2-(三甲铵基)乙基]甲硫磺酸酯或氨基乙基甲硫磺酸酯处理后减弱或增强。这些发现表明,激动剂占据 α4(+)/(α4(-)界面上的位点会导致通过涉及环 C 的偶联机制引起通道门控。总体而言,我们提出,α4(+)/α4(-)界面上的额外激动剂位点,当被激动剂占据时,有助于受体激活,而这种额外贡献是 (α4β2)(2)α4 nAChR 激动剂敏感性特征的基础。