Moroni Mirko, Vijayan Ranjit, Carbone Anna, Zwart Ruud, Biggin Philip C, Bermudez Isabel
School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
J Neurosci. 2008 Jul 2;28(27):6884-94. doi: 10.1523/JNEUROSCI.1228-08.2008.
The alpha4beta2 subtype is the most abundant nicotinic acetylcholine receptor (nAChR) in the brain and possesses the high-affinity binding site for nicotine. The alpha4 and beta2 nAChR subunits assemble into two alternate stoichiometries, (alpha4)(2)(beta2)(3) and (alpha4)(3)(beta2)(2), which differ in their functional properties and sensitivity to chronic exposure to nicotine. Here, we investigated the sensitivity of both receptor stoichiometries to modulation by Zn2+. We show that Zn2+ exerts an inhibitory modulatory effect on (alpha4)(2)(beta2)(3) receptors, whereas it potentiates or inhibits, depending on its concentration, the function of (alpha4)(3)(beta2)(2) receptors. Furthermore, Zn2+ inhibition on (alpha4)(2)(beta2)(3) nAChRs is voltage-dependent, whereas it is not on (alpha4)(3)(beta2)(2) receptors. We used molecular modeling in conjunction with alanine substitution and functional studies to identify two distinct sets of residues that determine these effects and may coordinate Zn(2+). Zn(2+) inhibition is mediated by a site located on the beta2(+)/alpha4(-) subunit interfaces on both receptor stoichiometries. alpha4(H195) and beta2(D218) are key determinants of this site. Zn2+ potentiation on (alpha4)(3)(beta2)(2) nAChRs is exerted by a site that resides on the alpha4(+)/alpha4(-) of this receptor stoichiometry. alpha4(H195) on the (-) side of the ACh-binding alpha4 subunit and alpha4(E224) on the (+) side of the non-ACh-binding alpha4 subunit critically contribute to this site. We also identified residues within the beta2 subunit that confer voltage dependency to Zn2+ inhibition on (alpha4)(2)(beta2)(3), but not on (alpha4)(3)(beta2)(2) nAChRs.
α4β2亚型是大脑中最为丰富的烟碱型乙酰胆碱受体(nAChR),并拥有对尼古丁的高亲和力结合位点。α4和β2 nAChR亚基组装成两种不同的化学计量比,即(α4)₂(β2)₃和(α4)₃(β2)₂,它们在功能特性以及对长期暴露于尼古丁的敏感性方面存在差异。在此,我们研究了这两种受体化学计量比对Zn²⁺调节的敏感性。我们发现,Zn²⁺对(α4)₂(β2)₃受体发挥抑制性调节作用,而对于(α4)₃(β2)₂受体,其功能根据Zn²⁺浓度的不同而增强或受到抑制。此外,Zn²⁺对(α4)₂(β2)₃ nAChRs的抑制作用具有电压依赖性,而对(α4)₃(β2)₂受体则不具有电压依赖性。我们结合分子建模、丙氨酸替代和功能研究,以确定两组不同的残基,这些残基决定了这些效应并可能与Zn²⁺配位。Zn²⁺的抑制作用由位于两种受体化学计量比的β2⁺/α4⁻亚基界面上的一个位点介导。α4(H195)和β2(D218)是该位点的关键决定因素。Zn²⁺对(α4)₃(β2)₂ nAChRs的增强作用由位于该受体化学计量比的α4⁺/α4⁻上的一个位点发挥。位于结合ACh的α4亚基(-)侧的α4(H195)和位于非结合ACh的α4亚基(+)侧的α4(E224)对此位点起着关键作用。我们还确定了β2亚基内的残基,这些残基赋予了Zn²⁺对(α4)₂(β2)₃而非(α4)₃(β2)₂ nAChRs抑制作用的电压依赖性。