Divisions of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri 63110; Cardiology, Washington University, St. Louis, Missouri 63110.
Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110.
J Biol Chem. 2011 Sep 2;286(35):30949-30961. doi: 10.1074/jbc.M111.230508. Epub 2011 Jul 8.
Fatty acid synthase (FAS) promotes energy storage through de novo lipogenesis and participates in signaling by the nuclear receptor PPARα in noncardiac tissues. To determine if de novo lipogenesis is relevant to cardiac physiology, we generated and characterized FAS knockout in the myocardium (FASKard) mice. FASKard mice develop normally, manifest normal resting heart function, and have normal cardiac PPARα signaling as well as fatty acid oxidation. However, they decompensate with stress. Most die within 1 h of transverse aortic constriction, probably due to arrhythmia. Voltage clamp measurements of FASKard cardiomyocytes show hyperactivation of L-type calcium channel current that could not be reversed with palmitate supplementation. Of the classic regulators of this current, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not protein kinase A signaling is activated in FASKard hearts, and knockdown of FAS in cultured cells activates CaMKII. In addition to being intolerant of the stress of acute pressure, FASKard hearts were also intolerant of the stress of aging, reflected as persistent CaMKII hyperactivation, progression to dilatation, and premature death by ∼1 year of age. CaMKII signaling appears to be pathogenic in FASKard hearts because inhibition of its signaling in vivo rescues mice from early mortality after transverse aortic constriction. FAS was also increased in two mechanistically distinct mouse models of heart failure and in the hearts of humans with end stage cardiomyopathy. These data implicate a novel relationship between FAS and calcium signaling in the heart and suggest that FAS induction in stressed myocardium represents a compensatory response to protect cardiomyocytes from pathological calcium flux.
脂肪酸合酶 (FAS) 通过从头合成脂肪促进能量储存,并参与核受体 PPARα 在非心脏组织中的信号转导。为了确定从头合成脂肪是否与心脏生理学有关,我们生成并表征了心肌中的 FAS 敲除 (FASKard) 小鼠。FASKard 小鼠正常发育,表现出正常的静息心脏功能,并且具有正常的心脏 PPARα 信号转导以及脂肪酸氧化。然而,它们在应激下会失去代偿能力。大多数在横主动脉缩窄后 1 小时内死亡,可能是由于心律失常。FASKard 心肌细胞的电压钳测量显示 L 型钙通道电流的超激活,而用棕榈酸补充不能逆转这种超激活。在这种电流的经典调节因子中,只有 Ca(2+)/钙调蛋白依赖性蛋白激酶 II (CaMKII) 而不是蛋白激酶 A 信号被激活,并且在培养细胞中敲低 FAS 会激活 CaMKII。FASKard 心脏不仅不能耐受急性压力的应激,而且也不能耐受衰老的应激,表现为持续的 CaMKII 超激活、扩张进展,并在大约 1 岁时过早死亡。CaMKII 信号似乎在 FASKard 心脏中具有致病性,因为体内抑制其信号可以挽救横主动脉缩窄后早期死亡的小鼠。两种机制上不同的心力衰竭小鼠模型以及终末期心肌病患者的心脏中 FAS 也增加了。这些数据表明 FAS 和心脏中钙信号之间存在一种新的关系,并表明应激心肌中 FAS 的诱导代表了一种保护心肌细胞免受病理性钙流的代偿反应。