Department of Life Sciences (Biology), University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902; RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012.
RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045.
J Biol Chem. 2011 Sep 2;286(35):30962-30971. doi: 10.1074/jbc.M111.231183. Epub 2011 Jul 11.
Metabolic engineering of photosynthetic organisms is required for utilization of light energy and for reducing carbon emissions.Control of transcriptional regulators is a powerful approach for changing cellular dynamics, because a set of genes is concomitantly regulated. Here, we show that overexpression of a group 2 σ factor, SigE, enhances the expressions of sugar catabolic genes in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Transcriptome analysis revealed that genes for the oxidative pentose phosphate pathway and glycogen catabolism are induced by overproduction of SigE. Immunoblotting showed that protein levels of sugar catabolic enzymes, such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glycogen phosphorylase, and isoamylase, are increased. Glycogen levels are reduced in the SigE-overexpressing strain grown under light. Metabolome analysis revealed that metabolite levels of the TCA cycle and acetyl-CoA are significantly altered by SigE overexpression. The SigE-overexpressing strain also exhibited defective growth under mixotrophic or dark conditions. Thus, SigE overexpression changes sugar catabolism at the transcript to phenotype levels, suggesting a σ factor-based engineering method for modifying carbon metabolism in photosynthetic bacteria.
光合生物的代谢工程是利用光能和减少碳排放所必需的。转录调控因子的控制是改变细胞动力学的一种有力方法,因为一组基因是同时被调控的。在这里,我们表明,一组 2σ因子 SigE 的过表达增强了单细胞蓝藻集胞藻 6803 中糖分解代谢基因的表达。转录组分析显示,氧化戊糖磷酸途径和糖原分解代谢的基因是由 SigE 的过表达诱导的。免疫印迹显示,糖分解代谢酶如葡萄糖-6-磷酸脱氢酶、6-磷酸葡萄糖酸脱氢酶、糖原磷酸化酶和异淀粉酶的蛋白水平增加。在光照下生长的 SigE 过表达菌株中,糖原水平降低。代谢组分析显示,TCA 循环和乙酰辅酶 A 的代谢物水平因 SigE 的过表达而显著改变。SigE 过表达菌株在混养或黑暗条件下的生长也出现缺陷。因此,SigE 的过表达在转录到表型水平上改变了糖分解代谢,这表明基于σ因子的工程方法可以改变光合细菌的碳代谢。