School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland.
Int J Nanomedicine. 2011;6:1343-56. doi: 10.2147/IJN.S21145. Epub 2011 Jun 28.
Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.
Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.
Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC(50) values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl(-) channel blocker. Polystyrene nanoparticles activated basolateral K(+) channels and affected Cl(-) and HCO(3) (-) secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl(-) channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl(-) channels by the nanoparticles.
This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own.
在过去十年中,纳米技术为研究人员提供了新的纳米材料,如纳米颗粒,它们有可能为多种肺部疾病提供新的治疗方法。在本研究中,我们调查了聚苯乙烯纳米颗粒对上皮离子通道功能的急性影响。
使用表达囊性纤维化跨膜传导调节因子(CFTR)的人黏膜下Calu-3细胞和经基因工程改造以表达野生型CFTR基因的幼仓鼠肾细胞,通过Ussing室研究带负电荷的20纳米聚苯乙烯纳米颗粒对Calu-3细胞短路电流的作用,并通过使用幼仓鼠肾细胞贴片单独以及在存在已知CFTR通道激活剂的情况下研究单个CFTR Cl-通道。
聚苯乙烯纳米颗粒导致短路电流持续、可重复且浓度依赖性增加。反过来,这些短路电流反应在性质上是双相的,即先是一个初始峰值,然后是一个平台期。峰值和平台期短路电流反应的半数有效浓度(EC50)值分别为1457和315.5纳克/毫升。短路电流受到CFTR Cl-通道阻滞剂二苯胺-2-羧酸盐的抑制。聚苯乙烯纳米颗粒激活了基底外侧钾通道,并影响了氯离子和碳酸氢根离子的分泌。发现聚苯乙烯纳米颗粒激活短路电流的机制在很大程度上依赖于CFTR Cl-通道的钙依赖性和环核苷酸依赖性磷酸化。使用幼仓鼠肾细胞对分离的内向外贴片进行的记录证实了纳米颗粒对CFTR Cl-通道的直接激活。
这是第一项确定暴露于聚苯乙烯基纳米材料后气道细胞中离子通道被激活的研究。因此,由于聚苯乙烯纳米颗粒可能自身具有影响上皮细胞功能和生理过程的能力,所以不能将其视为治疗肺部疾病的简单中性药物递送载体。