Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Chem Asian J. 2011 Sep 5;6(9):2412-8. doi: 10.1002/asia.201100293. Epub 2011 Jul 14.
The most-stable (#916)C(56) carbon cage has been captured by in situ chlorination during the radio frequency furnace process. The resulting exohedral (#916)C(56)Cl(12) was separated and unambiguously characterized by single crystal X-ray structure determination. The discovery of (#916)C(56) provides evidence for a thermodynamically controlled mechanism of fullerene formation, and on the other hand shows that the in situ chlorination does not remarkably influence the fullerene formation itself but just results in the capture of preformed cages. A detailed analysis of the chlorination pattern of (#916)C(56)Cl(12) reveals the main factors controlling the reactivity of non-IPR fullerenes. A high degree of aromatization was observed in the remaining π-system by considering geometric criteria and nucleus-independent chemical-shift analysis (NICS). Along with the well-known stabilization of pentagon-pentagon junctions during chlorination, the formation of aromatic islands plays an important role in the stabilization of the fullerene cage and also in the determination of the chlorination pattern. Based on these empirical rules, the preferable addition patterns for non-IPR fullerene cages can be easily predicted.
在射频炉工艺过程中,最稳定的 (#916)C(56) 碳笼通过原位氯化反应被捕获。得到的外轨 (#916)C(56)Cl(12) 通过单晶 X 射线结构测定得以分离并被明确地鉴定。 (#916)C(56) 的发现为富勒烯形成的热力学控制机制提供了证据,另一方面表明,原位氯化反应本身并不会显著影响富勒烯的形成,而只是导致预先形成的笼的捕获。对 (#916)C(56)Cl(12) 的氯化模式的详细分析揭示了控制非 IP 富勒烯反应性的主要因素。通过考虑几何标准和核独立化学位移分析 (NICS),在剩余的 π 体系中观察到高度的芳香化。随着在氯化过程中五边形-五边形连接的稳定性增加,芳香岛的形成在富勒烯笼的稳定化以及氯化模式的确定中起着重要作用。基于这些经验规则,非 IP 富勒烯笼的优选加成模式可以很容易地预测。