Iglesias Juan Eugenio, Konukoglu Ender, Montillo Albert, Tu Zhuowen, Criminisi Antonio
University of California, Los Angeles, USA.
Inf Process Med Imaging. 2011;22:25-36. doi: 10.1007/978-3-642-22092-0_3.
This paper presents a new supervised learning framework for the efficient recognition and segmentation of anatomical structures in 3D computed tomography (CT), with as little training data as possible. Training supervised classifiers to recognize organs within CT scans requires a large number of manually delineated exemplar 3D images, which are very expensive to obtain. In this study, we borrow ideas from the field of active learning to optimally select a minimum subset of such images that yields accurate anatomy segmentation. The main contribution of this work is in designing a combined generative-discriminative model which: i) drives optimal selection of training data; and ii) increases segmentation accuracy. The optimal training set is constructed by finding unlabeled scans which maximize the disagreement between our two complementary probabilistic models, as measured by a modified version of the Jensen-Shannon divergence. Our algorithm is assessed on a database of 196 labeled clinical CT scans with high variability in resolution, anatomy, pathologies, etc. Quantitative evaluation shows that, compared with randomly selecting the scans to annotate, our method decreases the number of training images by up to 45%. Moreover, our generative model of body shape substantially increases segmentation accuracy when compared to either using the discriminative model alone or a generic smoothness prior (e.g. via a Markov Random Field).
本文提出了一种新的监督学习框架,用于在三维计算机断层扫描(CT)中高效识别和分割解剖结构,且所需训练数据尽可能少。训练监督分类器以识别CT扫描中的器官需要大量手动勾勒的三维示例图像,而获取这些图像成本很高。在本研究中,我们借鉴主动学习领域的思想,以最优方式选择此类图像的最小子集,从而实现准确的解剖结构分割。这项工作的主要贡献在于设计了一种组合生成-判别模型,该模型:i)推动训练数据的最优选择;ii)提高分割精度。通过找到未标记扫描来构建最优训练集,这些未标记扫描能使我们两个互补概率模型之间的差异最大化,差异由詹森-香农散度的改进版本衡量。我们的算法在一个包含196个标记临床CT扫描的数据库上进行评估,该数据库在分辨率、解剖结构、病理等方面具有高度变异性。定量评估表明,与随机选择扫描进行标注相比,我们的方法可将训练图像数量减少多达45%。此外,与单独使用判别模型或通用平滑先验(例如通过马尔可夫随机场)相比,我们的身体形状生成模型显著提高了分割精度。