Suppr超能文献

纠缠决策森林及其在CT图像语义分割中的应用。

Entangled decision forests and their application for semantic segmentation of CT images.

作者信息

Montillo Albert, Shotton Jamie, Winn John, Iglesias Juan Eugenio, Metaxas Dimitri, Criminisi Antonio

机构信息

GE Global Research Center, Niskayuna, NY, USA.

出版信息

Inf Process Med Imaging. 2011;22:184-96. doi: 10.1007/978-3-642-22092-0_16.

Abstract

This work addresses the challenging problem of simultaneously segmenting multiple anatomical structures in highly varied CT scans. We propose the entangled decision forest (EDF) as a new discriminative classifier which augments the state of the art decision forest, resulting in higher prediction accuracy and shortened decision time. Our main contribution is two-fold. First, we propose entangling the binary tests applied at each tree node in the forest, such that the test result can depend on the result of tests applied earlier in the same tree and at image points offset from the voxel to be classified. This is demonstrated to improve accuracy and capture long-range semantic context. Second, during training, we propose injecting randomness in a guided way, in which node feature types and parameters are randomly drawn from a learned (nonuniform) distribution. This further improves classification accuracy. We assess our probabilistic anatomy segmentation technique using a labeled database of CT image volumes of 250 different patients from various scan protocols and scanner vendors. In each volume, 12 anatomical structures have been manually segmented. The database comprises highly varied body shapes and sizes, a wide array of pathologies, scan resolutions, and diverse contrast agents. Quantitative comparisons with state of the art algorithms demonstrate both superior test accuracy and computational efficiency.

摘要

这项工作解决了在高度多样的CT扫描中同时分割多个解剖结构这一具有挑战性的问题。我们提出了纠缠决策森林(EDF)作为一种新的判别式分类器,它改进了当前的决策森林技术,从而提高了预测准确性并缩短了决策时间。我们的主要贡献有两个方面。首先,我们提出对应用于森林中每个树节点的二元测试进行纠缠,使得测试结果可以依赖于在同一棵树中更早应用的测试结果以及与待分类体素偏移的图像点处的测试结果。这被证明可以提高准确性并捕捉远程语义上下文。其次,在训练期间,我们提出以一种有指导的方式注入随机性,即从一个学习到的(非均匀)分布中随机抽取节点特征类型和参数。这进一步提高了分类准确性。我们使用来自不同扫描协议和扫描仪供应商的250名不同患者的CT图像体积的标记数据库来评估我们的概率解剖分割技术。在每个体积中,12个解剖结构已被手动分割。该数据库包含高度多样的身体形状和大小、各种各样的病变、扫描分辨率以及不同的造影剂。与现有算法的定量比较表明,我们的方法在测试准确性和计算效率方面都更具优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验