Suppr超能文献

一种通过对个体图像序列进行分组配准构建新型纵向图谱的框架。

A novel longitudinal atlas construction framework by groupwise registration of subject image sequences.

作者信息

Liao Shu, Jia Hongjun, Wu Guorong, Shen Dinggang

机构信息

Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.

出版信息

Inf Process Med Imaging. 2011;22:283-95. doi: 10.1007/978-3-642-22092-0_24.

Abstract

Longitudinal atlas construction is a challenging task in medical image analysis. Given a set of longitudinal images of different subjects, the task is how to construct the unbias longitudinal atlas sequence reflecting the anatomical changes over time. In this paper, a novel longitudinal atlas construction framework is proposed. The main contributions of the proposed method lie in the following aspects: (1) Subject-specific longitudinal information is captured by establishing a robust growth model for each subject. (2) The trajectory constraints are enforced for both subject image sequences and the atlas sequence, and only one transformation is needed for each subject to map its image sequence to the atlas sequence while preserving the temporal correspondence. (3) The longitudinal atlases are estimated by groupwise registration and kernel regression, thus no explicit template is used and the atlases are constructed without introducing bias due to the selection of the explicit template. (4) The proposed method is general, where the number of longitudinal images of each subject and the time points at which the images are taken can be different. The proposed method is evaluated on a longitudinal database and compared with a state-of-the-art longitudinal atlas construction method. Experimental results show that the proposed method achieves more consistent spatial-temporal correspondence as well as higher registration accuracy than the compared method.

摘要

纵向图谱构建是医学图像分析中的一项具有挑战性的任务。给定一组不同受试者的纵向图像,任务是如何构建反映随时间变化的解剖结构变化的无偏差纵向图谱序列。本文提出了一种新颖的纵向图谱构建框架。该方法的主要贡献体现在以下几个方面:(1)通过为每个受试者建立稳健的生长模型来捕获特定受试者的纵向信息。(2)对受试者图像序列和图谱序列都施加轨迹约束,并且每个受试者只需要一次变换就可以将其图像序列映射到图谱序列,同时保持时间对应关系。(3)通过组内配准和核回归估计纵向图谱,因此不使用显式模板,并且在构建图谱时不会因显式模板的选择而引入偏差。(4)所提出的方法具有通用性,其中每个受试者的纵向图像数量和拍摄图像的时间点可以不同。该方法在一个纵向数据库上进行了评估,并与一种先进的纵向图谱构建方法进行了比较。实验结果表明,与比较方法相比,该方法实现了更一致的时空对应以及更高的配准精度。

相似文献

1
A novel longitudinal atlas construction framework by groupwise registration of subject image sequences.
Inf Process Med Imaging. 2011;22:283-95. doi: 10.1007/978-3-642-22092-0_24.
2
A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences.
Neuroimage. 2012 Jan 16;59(2):1275-89. doi: 10.1016/j.neuroimage.2011.07.095. Epub 2011 Aug 22.
3
Similarity metrics for groupwise non-rigid registration.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):544-52. doi: 10.1007/978-3-540-75759-7_66.
4
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.
5
Groupwise combined segmentation and registration for atlas construction.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):532-40. doi: 10.1007/978-3-540-75757-3_65.
6
Statistical and topological atlas based brain image segmentation.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):94-101. doi: 10.1007/978-3-540-75757-3_12.
7
Groupwise registration by hierarchical anatomical correspondence detection.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
8
Effects of registration regularization and atlas sharpness on segmentation accuracy.
Med Image Anal. 2008 Oct;12(5):603-15. doi: 10.1016/j.media.2008.06.005. Epub 2008 Jun 19.
9
Joint segmentation of image ensembles via latent atlases.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):272-80. doi: 10.1007/978-3-642-04268-3_34.
10
Construction and validation of mean shape atlas templates for atlas-based brain image segmentation.
Inf Process Med Imaging. 2005;19:689-700. doi: 10.1007/11505730_57.

引用本文的文献

1
Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:262-272. doi: 10.1007/978-3-030-87196-3_25. Epub 2021 Sep 21.

本文引用的文献

1
Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):297-304. doi: 10.1007/978-3-642-04268-3_37.
2
The effect of template choice on morphometric analysis of pediatric brain data.
Neuroimage. 2009 Apr 15;45(3):769-77. doi: 10.1016/j.neuroimage.2008.12.046. Epub 2009 Jan 6.
3
Spatio-temporal free-form registration of cardiac MR image sequences.
Med Image Anal. 2005 Oct;9(5):441-56. doi: 10.1016/j.media.2005.05.004.
4
Unbiased diffeomorphic atlas construction for computational anatomy.
Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.
5
Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping.
Neuroimage. 2004 Apr;21(4):1508-17. doi: 10.1016/j.neuroimage.2003.12.015.
6
One-year age changes in MRI brain volumes in older adults.
Cereb Cortex. 2000 May;10(5):464-72. doi: 10.1093/cercor/10.5.464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验