Yeo B T Thomas, Sabuncu Mert R, Desikan Rahul, Fischl Bruce, Golland Polina
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Med Image Anal. 2008 Oct;12(5):603-15. doi: 10.1016/j.media.2008.06.005. Epub 2008 Jun 19.
In non-rigid registration, the tradeoff between warp regularization and image fidelity is typically determined empirically. In atlas-based segmentation, this leads to a probabilistic atlas of arbitrary sharpness: weak regularization results in well-aligned training images and a sharp atlas; strong regularization yields a "blurry" atlas. In this paper, we employ a generative model for the joint registration and segmentation of images. The atlas construction process arises naturally as estimation of the model parameters. This framework allows the computation of unbiased atlases from manually labeled data at various degrees of "sharpness", as well as the joint registration and segmentation of a novel brain in a consistent manner. We study the effects of the tradeoff of atlas sharpness and warp smoothness in the context of cortical surface parcellation. This is an important question because of the increasingly availability of atlases in public databases, and the development of registration algorithms separate from the atlas construction process. We find that the optimal segmentation (parcellation) corresponds to a unique balance of atlas sharpness and warp regularization, yielding statistically significant improvements over the FreeSurfer parcellation algorithm. Furthermore, we conclude that one can simply use a single atlas computed at an optimal sharpness for the registration-segmentation of a new subject with a pre-determined, fixed, optimal warp constraint. The optimal atlas sharpness and warp smoothness can be determined by probing the segmentation performance on available training data. Our experiments also suggest that segmentation accuracy is tolerant up to a small mismatch between atlas sharpness and warp smoothness.
在非刚性配准中,变形正则化与图像保真度之间的权衡通常凭经验确定。在基于图谱的分割中,这会导致产生任意清晰度的概率图谱:弱正则化会使训练图像对齐良好且图谱清晰;强正则化会产生“模糊”的图谱。在本文中,我们采用一种生成模型进行图像的联合配准和分割。图谱构建过程自然地作为模型参数估计而出现。该框架允许从各种“清晰度”的手动标注数据计算无偏图谱,并以一致的方式对新的大脑进行联合配准和分割。我们在皮质表面分割的背景下研究图谱清晰度与变形平滑度权衡的影响。这是一个重要问题,因为公共数据库中图谱的可用性日益增加,以及与图谱构建过程分离的配准算法的发展。我们发现最优分割(分区)对应于图谱清晰度与变形正则化的独特平衡,比FreeSurfer分割算法有统计学上显著的改进。此外,我们得出结论,对于具有预先确定的固定最优变形约束的新受试者的配准 - 分割,可以简单地使用在最优清晰度下计算的单个图谱。最优图谱清晰度和变形平滑度可以通过探测可用训练数据上的分割性能来确定。我们的实验还表明,分割精度对于图谱清晰度和变形平滑度之间的小不匹配具有容忍度。