Suppr超能文献

DICCCOL:基于密集个体化和共同连通性的皮质标志点。

DICCCOL: dense individualized and common connectivity-based cortical landmarks.

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA.

出版信息

Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.

Abstract

Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work.

摘要

是否存在一种可以在个体和人群中进行定量编码和精确再现的通用结构和功能皮质架构?由于大脑皮质的复杂性、可变性和非线性,这个问题在很大程度上仍然没有得到解答。在这里,我们假设共同的皮质结构可以通过群组一致的结构纤维连接有效地表示,并采取一种新颖的基于数据驱动的方法来探索皮质结构。我们报告了一个密集且一致的 358 个皮质地标图谱,称为基于群组一致的结构纤维连接的密集个体化和通用皮质地标(DICCCOL)。每个 DICCCOL 都由从弥散张量成像(DTI)数据中得出的群组一致的白质纤维连接模式定义。我们的结果表明,这些 358 个地标在一百多个人类大脑中具有惊人的可重复性,并且具有准确的内在建立的结构和功能跨个体对应关系,这些关系通过大规模功能磁共振成像数据得到验证。特别是,这些 358 个皮质地标可以通过 DTI 数据在新的单个大脑中准确且高效地进行预测。因此,这组 358 个 DICCCOL 地标全面编码了通用的结构和功能皮质架构,为许多脑科学应用提供了机会,包括在本工作中展示的人类脑连接组映射。

相似文献

1
DICCCOL: dense individualized and common connectivity-based cortical landmarks.
Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.
2
Anatomy-guided Dense Individualized and Common Connectivity-based Cortical Landmarks (A-DICCCOL).
IEEE Trans Biomed Eng. 2015 Apr;62(4):1108-19. doi: 10.1109/TBME.2014.2369491. Epub 2014 Nov 20.
3
Group-wise consistent cortical parcellation based on connectional profiles.
Med Image Anal. 2016 Aug;32:32-45. doi: 10.1016/j.media.2016.02.009. Epub 2016 Mar 14.
4
Meta-analysis of functional roles of DICCCOLs.
Neuroinformatics. 2013 Jan;11(1):47-63. doi: 10.1007/s12021-012-9165-y.
6
Group-wise FMRI activation detection on DICCCOL landmarks.
Neuroinformatics. 2014 Oct;12(4):513-34. doi: 10.1007/s12021-014-9226-5.
7
Anatomy-guided discovery of large-scale consistent connectivity-based cortical landmarks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):617-25. doi: 10.1007/978-3-642-40760-4_77.
9
Diffusion tensor imaging reveals evolution of primate brain architectures.
Brain Struct Funct. 2013 Nov;218(6):1429-50. doi: 10.1007/s00429-012-0468-4. Epub 2012 Nov 8.
10
Mapping of functional areas in the human cortex based on connectivity through association fibers.
Cereb Cortex. 2009 Aug;19(8):1889-95. doi: 10.1093/cercor/bhn215. Epub 2008 Dec 9.

引用本文的文献

1
ENHANCING GROUP-WISE CONSISTENCY IN 3-HINGE GYRUS MATCHING VIA ANATOMICAL EMBEDDING AND STRUCTURAL CONNECTIVITY OPTIMIZATION.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635893. Epub 2024 Aug 22.
2
Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior.
Psychoradiology. 2021 Mar 25;1(1):23-41. doi: 10.1093/psyrad/kkab002. eCollection 2021 Mar.
4
Building a tissue-unbiased brain template of fiber orientation distribution and tractography with multimodal registration.
Magn Reson Med. 2023 Mar;89(3):1207-1220. doi: 10.1002/mrm.29496. Epub 2022 Oct 26.
5
Reducing instability of inter-subject covariance of FDG uptake networks using structure-weighted sparse estimation approach.
Eur J Nucl Med Mol Imaging. 2022 Dec;50(1):80-89. doi: 10.1007/s00259-022-05949-9. Epub 2022 Aug 26.
6
Predicting brain structural network using functional connectivity.
Med Image Anal. 2022 Jul;79:102463. doi: 10.1016/j.media.2022.102463. Epub 2022 Apr 22.
7
Functional Subdivisions of the Cerebellum in Naturalistic Paradigm Functional Magnetic Resonance Imaging.
Front Neurosci. 2021 Dec 17;15:748561. doi: 10.3389/fnins.2021.748561. eCollection 2021.
8
Are Sex Differences in Human Brain Structure Associated With Sex Differences in Behavior?
Psychol Sci. 2021 Aug;32(8):1183-1197. doi: 10.1177/0956797621996664. Epub 2021 Jul 29.
9
Microcanonical and Canonical Ensembles for fMRI Brain Networks in Alzheimer's Disease.
Entropy (Basel). 2021 Feb 10;23(2):216. doi: 10.3390/e23020216.
10
Assessing Fine-Granularity Structural and Functional Connectivity in Children With Attention Deficit Hyperactivity Disorder.
Front Hum Neurosci. 2020 Nov 13;14:594830. doi: 10.3389/fnhum.2020.594830. eCollection 2020.

本文引用的文献

1
Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles.
Neuroimage. 2012 Jan 16;59(2):1382-93. doi: 10.1016/j.neuroimage.2011.08.037. Epub 2011 Aug 19.
2
The future of fMRI in cognitive neuroscience.
Neuroimage. 2012 Aug 15;62(2):1216-20. doi: 10.1016/j.neuroimage.2011.08.007. Epub 2011 Aug 11.
3
Automatic part selection for groupwise registration.
Inf Process Med Imaging. 2011;22:636-47. doi: 10.1007/978-3-642-22092-0_52.
4
Discovering dense and consistent landmarks in the brain.
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.
5
Characterizing spatially varying performance to improve multi-atlas multi-label segmentation.
Inf Process Med Imaging. 2011;22:85-96. doi: 10.1007/978-3-642-22092-0_8.
6
Predicting functional cortical ROIs via DTI-derived fiber shape models.
Cereb Cortex. 2012 Apr;22(4):854-64. doi: 10.1093/cercor/bhr152. Epub 2011 Jun 24.
7
PopTract: population-based tractography.
IEEE Trans Med Imaging. 2011 Oct;30(10):1829-40. doi: 10.1109/TMI.2011.2154385. Epub 2011 May 12.
8
A few thoughts on brain ROIs.
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.
10
Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task.
Front Syst Neurosci. 2011 Feb 8;5:7. doi: 10.3389/fnsys.2011.00007. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验