Suppr超能文献

DICCCOL:基于密集个体化和共同连通性的皮质标志点。

DICCCOL: dense individualized and common connectivity-based cortical landmarks.

机构信息

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA.

出版信息

Cereb Cortex. 2013 Apr;23(4):786-800. doi: 10.1093/cercor/bhs072. Epub 2012 Apr 5.

Abstract

Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work.

摘要

是否存在一种可以在个体和人群中进行定量编码和精确再现的通用结构和功能皮质架构?由于大脑皮质的复杂性、可变性和非线性,这个问题在很大程度上仍然没有得到解答。在这里,我们假设共同的皮质结构可以通过群组一致的结构纤维连接有效地表示,并采取一种新颖的基于数据驱动的方法来探索皮质结构。我们报告了一个密集且一致的 358 个皮质地标图谱,称为基于群组一致的结构纤维连接的密集个体化和通用皮质地标(DICCCOL)。每个 DICCCOL 都由从弥散张量成像(DTI)数据中得出的群组一致的白质纤维连接模式定义。我们的结果表明,这些 358 个地标在一百多个人类大脑中具有惊人的可重复性,并且具有准确的内在建立的结构和功能跨个体对应关系,这些关系通过大规模功能磁共振成像数据得到验证。特别是,这些 358 个皮质地标可以通过 DTI 数据在新的单个大脑中准确且高效地进行预测。因此,这组 358 个 DICCCOL 地标全面编码了通用的结构和功能皮质架构,为许多脑科学应用提供了机会,包括在本工作中展示的人类脑连接组映射。

相似文献

3
Group-wise consistent cortical parcellation based on connectional profiles.基于连接模式的组内一致皮质分块
Med Image Anal. 2016 Aug;32:32-45. doi: 10.1016/j.media.2016.02.009. Epub 2016 Mar 14.
4
Meta-analysis of functional roles of DICCCOLs.DICCCOLs 功能作用的荟萃分析。
Neuroinformatics. 2013 Jan;11(1):47-63. doi: 10.1007/s12021-012-9165-y.
9
Diffusion tensor imaging reveals evolution of primate brain architectures.弥散张量成像揭示灵长类动物大脑结构的演变。
Brain Struct Funct. 2013 Nov;218(6):1429-50. doi: 10.1007/s00429-012-0468-4. Epub 2012 Nov 8.

引用本文的文献

6
Predicting brain structural network using functional connectivity.利用功能连接预测脑结构网络。
Med Image Anal. 2022 Jul;79:102463. doi: 10.1016/j.media.2022.102463. Epub 2022 Apr 22.

本文引用的文献

2
The future of fMRI in cognitive neuroscience.功能磁共振成像在认知神经科学中的未来。
Neuroimage. 2012 Aug 15;62(2):1216-20. doi: 10.1016/j.neuroimage.2011.08.007. Epub 2011 Aug 11.
3
Automatic part selection for groupwise registration.用于分组配准的自动部件选择。
Inf Process Med Imaging. 2011;22:636-47. doi: 10.1007/978-3-642-22092-0_52.
4
Discovering dense and consistent landmarks in the brain.在大脑中发现密集且一致的地标。
Inf Process Med Imaging. 2011;22:97-110. doi: 10.1007/978-3-642-22092-0_9.
7
PopTract: population-based tractography.PopTract:基于人群的束追踪。
IEEE Trans Med Imaging. 2011 Oct;30(10):1829-40. doi: 10.1109/TMI.2011.2154385. Epub 2011 May 12.
8
A few thoughts on brain ROIs.关于脑 ROI 的几点思考。
Brain Imaging Behav. 2011 Sep;5(3):189-202. doi: 10.1007/s11682-011-9123-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验