Suppr超能文献

通过等离子体耦合照亮丝状伪足上的表皮生长因子受体密度。

Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.

机构信息

Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, USA.

出版信息

ACS Nano. 2011 Aug 23;5(8):6619-28. doi: 10.1021/nn202055b. Epub 2011 Jul 22.

Abstract

Filopodia have been hypothesized to act as remote sensors of the cell environment, but many details of the sensor function remain unclear. We investigated the distribution of the epidermal growth factor (EGF) receptor (EGFR) density on filopodia and on the dorsal cell membrane of A431 human epidermoid carcinoma cells using a nanoplasmonic enabled imaging tool. We targeted cell surface EGFR with 40 nm diameter Au nanoparticles (NPs) using a high affinity multivalent labeling strategy and determined relative NP binding affinities spatially resolved through plasmon coupling. Distance-dependent near-field interactions between the labels generated a NP density (ρ)-dependent spectral response that facilitated a spatial mapping of the EGFR density distribution on subcellular length scales in an optical microscope in solution. The measured ρ values were significantly higher on filopodia than on the cellular surface, which is indicative of an enrichment of EGFR on filopodia. A detailed characterization of the spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the findings of the all-optical plasmon coupling studies and provided additional structural details. The NPs exhibited a preferential association with the sides of the filopodia. We calibrated the ρ-dependent spectral response of the Au immunolabels through correlation of optical spectroscopy and SEM. The experimental dependence of the measured plasmon resonance wavelength (λ(res)) of the interacting immunolabels on ρ was well described by the fit λ(res) = 595.0 nm - 46.36 nm exp(-ρ/51.48) for ρ ≤ 476 NPs/μm(2). The performed correlated spectroscopic/SEM studies pave the way toward quantitative immunolabeling studies of EGFR and other important cell surface receptors in an optical microscope.

摘要

丝状伪足被假设为细胞环境的远程传感器,但传感器功能的许多细节仍不清楚。我们使用纳米等离子体成像工具研究了表皮生长因子 (EGF) 受体 (EGFR) 在丝状伪足和 A431 人表皮样癌细胞背膜上的分布。我们使用高亲和力多价标记策略靶向细胞表面 EGFR 与 40nm 直径的 Au 纳米颗粒 (NP),并通过等离子体耦合空间分辨确定相对 NP 结合亲和力。标记物之间的距离相关近场相互作用产生了 NP 密度 (ρ) 依赖性光谱响应,从而在溶液中的光学显微镜中以亚细胞长度尺度对 EGFR 密度分布进行空间映射。在丝状伪足上测量的 ρ 值明显高于在细胞表面上的 ρ 值,这表明 EGFR 在丝状伪足上的富集。通过扫描电子显微镜 (SEM) 对 NP 免疫标记的空间分布进行详细表征,证实了全光学等离子体耦合研究的发现,并提供了附加的结构细节。NP 优先与丝状伪足的侧面结合。我们通过光学光谱和 SEM 的相关性来校准 Au 免疫标记物的 ρ 依赖性光谱响应。相互作用免疫标记物的测量等离子体共振波长 (λ(res)) 对 ρ 的实验依赖性通过拟合 λ(res)=595.0nm-46.36nm exp(-ρ/51.48)得到很好的描述,其中 ρ≤476 NPs/μm(2)。进行的相关光谱/SEM 研究为在光学显微镜中定量 EGFR 和其他重要细胞表面受体的免疫标记研究铺平了道路。

相似文献

1
Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.
ACS Nano. 2011 Aug 23;5(8):6619-28. doi: 10.1021/nn202055b. Epub 2011 Jul 22.
4
Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation.
ACS Nano. 2018 Oct 23;12(10):10473-10485. doi: 10.1021/acsnano.8b06141. Epub 2018 Oct 11.
10
Investigations of EGFR configurations on tumor cell surface by high-resolution electron microscopy.
Biochem Biophys Res Commun. 2020 Nov 5;532(2):179-184. doi: 10.1016/j.bbrc.2020.07.018. Epub 2020 Aug 24.

引用本文的文献

2
Electrochemically Switchable Multimode Strong Coupling in Plasmonic Nanocavities.
Nano Lett. 2024 Jan 10;24(1):238-244. doi: 10.1021/acs.nanolett.3c03814. Epub 2024 Jan 2.
3
Plasmonic Nanoparticle-Based Digital Cytometry to Quantify MUC16 Binding on the Surface of Leukocytes in Ovarian Cancer.
ACS Sens. 2020 Sep 25;5(9):2772-2782. doi: 10.1021/acssensors.0c00567. Epub 2020 Sep 10.
5
Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation.
ACS Nano. 2018 Oct 23;12(10):10473-10485. doi: 10.1021/acsnano.8b06141. Epub 2018 Oct 11.
6
Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9041-E9050. doi: 10.1073/pnas.1804292115. Epub 2018 Sep 6.
8
Plasmonic nanoparticles and solar cells.
Sci Prog. 2016 Dec 1;99(4):438-449. doi: 10.3184/003685016X14773090197580.
9
Probing DNA Stiffness through Optical Fluctuation Analysis of Plasmon Rulers.
Nano Lett. 2015 Aug 12;15(8):5349-57. doi: 10.1021/acs.nanolett.5b01725. Epub 2015 Jul 6.
10
Quantifying lipid contents in enveloped virus particles with plasmonic nanoparticles.
Small. 2015 Apr;11(13):1592-602. doi: 10.1002/smll.201402184. Epub 2014 Nov 10.

本文引用的文献

1
Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications.
J Phys Chem C Nanomater Interfaces. 2011 Mar 24;115(11):4578-4583. doi: 10.1021/jp112146d.
2
Optical sizing of immunolabel clusters through multispectral plasmon coupling microscopy.
Nano Lett. 2011 Feb 9;11(2):498-504. doi: 10.1021/nl103315t. Epub 2011 Jan 19.
3
Electromagnetic scattering by an aggregate of spheres.
Appl Opt. 1995 Jul 20;34(21):4573-88. doi: 10.1364/AO.34.004573.
4
Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16524-9. doi: 10.1073/pnas.1002642107. Epub 2010 Sep 2.
6
EGFR immunolabeling pattern may discriminate low-grade gliomas from gliosis.
J Neurooncol. 2011 Apr;102(2):171-8. doi: 10.1007/s11060-010-0308-4. Epub 2010 Jul 24.
7
Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes.
J Phys Chem C Nanomater Interfaces. 2010 Mar 1;114(11):4901-4908. doi: 10.1021/jp911858v.
8
Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6340-5. doi: 10.1073/pnas.0913360107. Epub 2010 Mar 22.
9
Spatial control of EGF receptor activation by reversible dimerization on living cells.
Nature. 2010 Apr 1;464(7289):783-7. doi: 10.1038/nature08827. Epub 2010 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验