Suppr超能文献

在单细胞水平上对大规模受体聚类进行特征分析:等离子体耦合与荧光超分辨率显微镜研究的比较。

Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study.

机构信息

Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States.

出版信息

J Phys Chem B. 2019 Jul 5;123(26):5494-5505. doi: 10.1021/acs.jpcb.9b05176. Epub 2019 Jun 20.

Abstract

Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.

摘要

细胞膜受体的空间聚类被表明在信号起始中发挥调节作用,并且受体在细胞表面的分布可能代表一种潜在的生物标志物。为了实现其在诊断目的中的潜力,需要能够高通量绘制空间受体异质性的可扩展测定法。在这项工作中,我们使用平均直径为 72.17 ± 2.16nm 的金纳米粒子 (NP) 标记物作为大尺寸表皮生长因子受体 (EGFR) 在高光谱等离子体耦合显微镜中的聚类的明亮标记物,并将获得的聚类图谱与通过荧光超分辨率显微镜 (直接随机光学重建显微镜,dSTORM) 获得的图谱进行比较。我们的 dSTORM 实验分别揭示了 MDA-MB-468 和 HeLa 中 EGFR 平均簇大小为 172 ± 99nm 和 150 ± 90nm。EGFR 激活后,簇的大小减小。NP 标记物的高光谱成像表明,EGFR 簇大小的差异伴随着电磁耦合 NP 之间平均分离的差异。由于等离子体耦合的距离依赖性,平均粒子间分离的变化导致显著的光谱位移。对于本工作中研究的实验条件,NP 标记物的高光谱等离子体耦合显微镜与 dSTORM 一样识别出大规模 EGFR 聚类的相同趋势,但 NP 成像方法在一小部分时间内提供了信息。dSTORM 和高光谱等离子体耦合显微镜都证实了皮质肌动蛋白网络作为决定 EGFR 簇平均大小的结构成分之一。

相似文献

2
Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation.
ACS Nano. 2018 Oct 23;12(10):10473-10485. doi: 10.1021/acsnano.8b06141. Epub 2018 Oct 11.
3
Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling.
ACS Nano. 2011 Aug 23;5(8):6619-28. doi: 10.1021/nn202055b. Epub 2011 Jul 22.
5
Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy.
Nano Lett. 2008 Oct;8(10):3386-93. doi: 10.1021/nl802058q. Epub 2008 Sep 13.
9
Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications.
Chem Soc Rev. 2014 Jun 7;43(11):3884-97. doi: 10.1039/c3cs60340g. Epub 2014 Jan 6.
10

引用本文的文献

2
Surface-Patterned DNA Origami Rulers Reveal Nanoscale Distance Dependency of the Epidermal Growth Factor Receptor Activation.
Nano Lett. 2024 Feb 7;24(5):1611-1619. doi: 10.1021/acs.nanolett.3c04272. Epub 2024 Jan 24.
3
Roadmap on optical sensors.
J Opt. 2024 Jan 1;26(1):013001. doi: 10.1088/2040-8986/ad0e85. Epub 2023 Dec 18.
6
Wavelength-Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures.
ACS Nano. 2022 Apr 26;16(4):6813-6824. doi: 10.1021/acsnano.2c01706. Epub 2022 Mar 29.
7
Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing.
Nanoscale. 2021 Feb 14;13(6):3374-3411. doi: 10.1039/d0nr08353d. Epub 2021 Feb 4.
8
Nanoscale Molecular Quantification of Stem Cell-Hydrogel Interactions.
ACS Nano. 2020 Dec 22;14(12):17321-17332. doi: 10.1021/acsnano.0c07428. Epub 2020 Nov 20.

本文引用的文献

1
Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation.
ACS Nano. 2018 Oct 23;12(10):10473-10485. doi: 10.1021/acsnano.8b06141. Epub 2018 Oct 11.
2
Optimized protocol for combined PALM-dSTORM imaging.
Sci Rep. 2018 Jun 8;8(1):8749. doi: 10.1038/s41598-018-27059-z.
3
EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2836-E2845. doi: 10.1073/pnas.1617994114. Epub 2017 Mar 20.
4
Clustered localization of EGFRvIII in glioblastoma cells as detected by high precision localization microscopy.
Nanoscale. 2016 Dec 28;8(48):20037-20047. doi: 10.1039/c6nr05880a. Epub 2016 Nov 24.
5
Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-resolution Microscopy.
ACS Nano. 2017 Jan 24;11(1):249-257. doi: 10.1021/acsnano.6b05356. Epub 2016 Nov 3.
6
Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.
Small. 2016 Nov;12(42):5891-5901. doi: 10.1002/smll.201601631. Epub 2016 Sep 8.
7
Optimizing Imaging Conditions for Demanding Multi-Color Super Resolution Localization Microscopy.
PLoS One. 2016 Jul 8;11(7):e0158884. doi: 10.1371/journal.pone.0158884. eCollection 2016.
10
Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane.
Mol Biol Cell. 2016 Apr 1;27(7):1101-19. doi: 10.1091/mbc.E15-04-0186. Epub 2016 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验