Universidad Nacional Autónoma de México, México.
Artif Life. 2011 Fall;17(4):331-51. doi: 10.1162/artl_a_00042. Epub 2011 Jul 15.
Random Boolean networks (RBNs) have been a popular model of genetic regulatory networks for more than four decades. However, most RBN studies have been made with random topologies, while real regulatory networks have been found to be modular. In this work, we extend classical RBNs to define modular RBNs. Statistical experiments and analytical results show that modularity has a strong effect on the properties of RBNs. In particular, modular RBNs have more attractors, and are closer to criticality when chaotic dynamics would be expected, than classical RBNs.
随机布尔网络(RBN)作为遗传调控网络的模型已经流行了四十多年。然而,大多数 RBN 的研究都是基于随机拓扑结构的,而实际的调控网络被发现是模块化的。在这项工作中,我们将经典的 RBN 进行扩展,以定义模块化 RBN。统计实验和分析结果表明,模块性对 RBN 的性质有很强的影响。特别是,模块化 RBN 具有更多的吸引子,并且在预期混沌动力学时更接近临界点,而经典 RBN 则不然。