Suppr超能文献

独立进化起源的功能性多胺生物合成酶融合体催化从头二胺形成三胺。

Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation.

机构信息

Institute of Food Research, Norwich Research Park, Colney, Norwich NR47UA, UK.

出版信息

Mol Microbiol. 2011 Aug;81(4):1109-24. doi: 10.1111/j.1365-2958.2011.07757.x. Epub 2011 Jul 18.

Abstract

We have identified gene fusions of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from β-proteobacterium Delftia acidovorans and δ-proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α-proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and β-proteobacterium D. acidovorans each produce a different profile of non-native polyamines including sym-norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non-native 1,3-diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N-carbamoylputrescine amidohydrolase in archaea, and of S-adenosylmethionine decarboxylase and ornithine decarboxylase in the single-celled green alga Micromonas.

摘要

我们已经在不同的细菌门中鉴定了多胺生物合成酶 S-腺苷甲硫氨酸脱羧酶(AdoMetDC,speD)和氨基丙基转移酶(speE)同源物的基因融合。这两个结构域都具有功能活性,我们通过β变形菌 Delftia acidovorans 和δ变形菌 Syntrophus aciditrophicus 的融合酶证明了新型从头合成三胺亚精胺,该融合酶来自沙门氏菌 sv Typhimurium 的ΔspeDE 基因缺失株。海洋α变形菌 Candidatus Pelagibacter ubique、放线菌 Nocardia farcinica、绿菌门物种 Chloroherpeton thalassium 和β变形菌 D. acidovorans 的融合蛋白在大肠杆菌中表达时,各自产生不同的非天然多胺谱,包括对称-norspermidine。不同的氨基丙基转移酶活性以及系统发育分析证实了一些融合的独立进化起源。比较基因组分析强烈表明,基因融合是通过相邻开放阅读框的合并而产生的。独立的融合事件以及水平和垂直基因转移导致了基因融合在系统发育上的分散分布。令人惊讶的是,融合基因在大肠杆菌和沙门氏菌中的表达揭示了这些物种中新型潜在的亚精胺分解代谢活性,产生非天然的 1,3-二氨基丙烷。我们还在古菌中鉴定了多胺生物合成酶胍氨酸脱氨酶和 N-碳酰胺腐胺酰胺水解酶的融合,以及单细胞绿藻 Micromonas 中的 S-腺苷甲硫氨酸脱羧酶和鸟氨酸脱羧酶的融合。

相似文献

1
Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation.
Mol Microbiol. 2011 Aug;81(4):1109-24. doi: 10.1111/j.1365-2958.2011.07757.x. Epub 2011 Jul 18.
4
A polyamine-independent role for -adenosylmethionine decarboxylase.
Biochem J. 2019 Sep 20;476(18):2579-2594. doi: 10.1042/BCJ20190561.
10

引用本文的文献

2
SAR11 Cells Rely on Enzyme Multifunctionality To Metabolize a Range of Polyamine Compounds.
mBio. 2021 Aug 31;12(4):e0109121. doi: 10.1128/mBio.01091-21. Epub 2021 Aug 24.
3
Polyamines in Microalgae: Something Borrowed, Something New.
Mar Drugs. 2018 Dec 20;17(1):1. doi: 10.3390/md17010001.
4
Polyamine function in archaea and bacteria.
J Biol Chem. 2018 Nov 30;293(48):18693-18701. doi: 10.1074/jbc.TM118.005670. Epub 2018 Sep 25.
5
Spermidine promotes biofilm formation by activating expression of the matrix regulator .
J Biol Chem. 2017 Jul 21;292(29):12041-12053. doi: 10.1074/jbc.M117.789644. Epub 2017 May 25.

本文引用的文献

4
Polyamine biosynthetic diversity in plants and algae.
Plant Physiol Biochem. 2010 Jul;48(7):513-20. doi: 10.1016/j.plaphy.2010.02.008. Epub 2010 Feb 21.
6
Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium.
Nature. 2010 Mar 4;464(7285):90-4. doi: 10.1038/nature08786. Epub 2010 Feb 21.
7
Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2.
J Biol Chem. 2010 Apr 9;285(15):11093-9. doi: 10.1074/jbc.M110.101139. Epub 2010 Feb 15.
8
S-Adenosylmethionine decarboxylase.
Essays Biochem. 2009 Nov 4;46:25-45. doi: 10.1042/bse0460003.
9
Structural biology of S-adenosylmethionine decarboxylase.
Amino Acids. 2010 Feb;38(2):451-60. doi: 10.1007/s00726-009-0404-y. Epub 2009 Dec 8.
10
A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation.
Nucleic Acids Res. 2010 Jan;38(2):353-9. doi: 10.1093/nar/gkp1037. Epub 2009 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验