Suppr超能文献

通过 G 蛋白偶联受体展示膜蛋白的现代分子动力学模拟。

Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors.

机构信息

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA.

出版信息

Curr Opin Struct Biol. 2011 Aug;21(4):552-8. doi: 10.1016/j.sbi.2011.06.008. Epub 2011 Jul 19.

Abstract

Despite many years of dedicated efforts, high-resolution structural determination of membrane proteins lags far behind that of soluble proteins. Computational methods in general, and molecular dynamics (MD) simulations in particular, have represented important alternative resources over the years to advance understanding of membrane protein structure and function. However, it is only recently that much progress has been achieved owing to new high-resolution membrane protein structures, specialized parallel computer architectures, and efficient simulation algorithms. This has definitely been the case for G protein-coupled receptors (GPCRs), which have assumed a leading role in the area of structural biology with several new structures appearing in the literature during the past five years. We provide here a concise overview of recent developments in computational biophysics of membrane proteins, using GPCRs as an example to showcase important information that can be derived from modern MD simulations.

摘要

尽管经过多年的努力,膜蛋白的高分辨率结构测定仍远远落后于可溶性蛋白。多年来,计算方法,特别是分子动力学(MD)模拟,已经成为深入了解膜蛋白结构和功能的重要替代资源。然而,由于新的高分辨率膜蛋白结构、专门的并行计算机架构和高效的模拟算法,最近才取得了很大的进展。G 蛋白偶联受体(GPCR)就是一个很好的例子,在过去五年中,该领域的文献中出现了几个新的结构,这使得 GPCR 在结构生物学领域中占据了主导地位。我们在这里提供了一个关于膜蛋白计算生物物理学的简要概述,以 GPCR 为例,展示了可以从现代 MD 模拟中得出的重要信息。

相似文献

1
Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors.
Curr Opin Struct Biol. 2011 Aug;21(4):552-8. doi: 10.1016/j.sbi.2011.06.008. Epub 2011 Jul 19.
3
Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations.
Biochim Biophys Acta. 2011 Jul;1808(7):1868-78. doi: 10.1016/j.bbamem.2011.03.010. Epub 2011 Apr 3.
4
Peeking at G-protein-coupled receptors through the molecular dynamics keyhole.
Future Med Chem. 2019 Mar;11(6):599-615. doi: 10.4155/fmc-2018-0393. Epub 2019 Mar 19.
5
Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery.
Int J Mol Sci. 2019 Aug 29;20(17):4237. doi: 10.3390/ijms20174237.
7
GPCRs: What Can We Learn from Molecular Dynamics Simulations?
Methods Mol Biol. 2018;1705:133-158. doi: 10.1007/978-1-4939-7465-8_6.
8
Characterization of the dynamic events of GPCRs by automated computational simulations.
Biochem Soc Trans. 2013 Feb 1;41(1):205-12. doi: 10.1042/BST20120287.
9
G-protein coupled receptors: advances in simulation and drug discovery.
Curr Opin Struct Biol. 2016 Dec;41:83-89. doi: 10.1016/j.sbi.2016.06.008. Epub 2016 Jun 22.
10
Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time.
Methods Mol Biol. 2018;1705:197-206. doi: 10.1007/978-1-4939-7465-8_9.

引用本文的文献

2
Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors.
JACS Au. 2023 Nov 2;3(11):3165-3180. doi: 10.1021/jacsau.3c00503. eCollection 2023 Nov 27.
3
Challenges and frontiers of computational modelling of biomolecular recognition.
QRB Discov. 2022;3. doi: 10.1017/qrd.2022.11. Epub 2022 Aug 19.
4
Predicting Biomolecular Binding Kinetics: A Review.
J Chem Theory Comput. 2023 Apr 25;19(8):2135-2148. doi: 10.1021/acs.jctc.2c01085. Epub 2023 Mar 29.
5
Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors.
Res Sq. 2023 Feb 20:rs.3.rs-2543463. doi: 10.21203/rs.3.rs-2543463/v1.
6
Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors.
bioRxiv. 2023 Feb 2:2023.01.15.524128. doi: 10.1101/2023.01.15.524128.
7
Gaussian Accelerated Molecular Dynamics in OpenMM.
J Phys Chem B. 2022 Aug 11;126(31):5810-5820. doi: 10.1021/acs.jpcb.2c03765. Epub 2022 Jul 27.
8
Molecular Simulations and Drug Discovery of Adenosine Receptors.
Molecules. 2022 Mar 22;27(7):2054. doi: 10.3390/molecules27072054.
9
Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor.
Front Mol Biosci. 2022 Mar 11;9:821055. doi: 10.3389/fmolb.2022.821055. eCollection 2022.
10
GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling.
J Chem Theory Comput. 2022 Mar 8;18(3):1423-1436. doi: 10.1021/acs.jctc.1c01055. Epub 2022 Feb 24.

本文引用的文献

2
Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations.
Biochim Biophys Acta. 2011 Jul;1808(7):1868-78. doi: 10.1016/j.bbamem.2011.03.010. Epub 2011 Apr 3.
3
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
4
Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging.
J Cell Biol. 2011 Feb 7;192(3):463-80. doi: 10.1083/jcb.201009128.
5
Making structural sense of dimerization interfaces of delta opioid receptor homodimers.
Biochemistry. 2011 Mar 15;50(10):1682-90. doi: 10.1021/bi101474v. Epub 2011 Feb 9.
6
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.
7
Conical intersection dynamics of the primary photoisomerization event in vision.
Nature. 2010 Sep 23;467(7314):440-3. doi: 10.1038/nature09346.
8
Sensing G protein-coupled receptor activation.
Neuropharmacology. 2011 Jan;60(1):45-51. doi: 10.1016/j.neuropharm.2010.08.006. Epub 2010 Aug 18.
9
GPU-accelerated molecular modeling coming of age.
J Mol Graph Model. 2010 Sep;29(2):116-25. doi: 10.1016/j.jmgm.2010.06.010. Epub 2010 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验