Suppr超能文献

GLow:用于自由能剖析的高斯加速分子动力学和深度学习的工作流程集成。

GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling.

机构信息

The Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047, United States.

出版信息

J Chem Theory Comput. 2022 Mar 8;18(3):1423-1436. doi: 10.1021/acs.jctc.1c01055. Epub 2022 Feb 24.

Abstract

We introduce a Gaussian-accelerated molecular dynamics (GaMD), deep learning (DL), and free energy profiling workflow (GLOW) to predict molecular determinants and map free energy landscapes of biomolecules. All-atom GaMD-enhanced sampling simulations are first performed on biomolecules of interest. Structural contact maps are then calculated from GaMD simulation frames and transformed into images for building DL models using a convolutional neural network. Important structural contacts are further determined from DL models of attention maps of the structural contact gradients, which allow us to identify the system reaction coordinates. Finally, free energy profiles are calculated for the selected reaction coordinates through energetic reweighting of the GaMD simulations. We have also successfully demonstrated GLOW for the characterization of activation and allosteric modulation of a G protein-coupled receptor, using the adenosine A receptor (AAR) as a model system. GLOW findings are highly consistent with previous experimental and computational studies of the AAR, while also providing further mechanistic insights into the receptor function. In summary, GLOW provides a systematic approach to mapping free energy landscapes of biomolecules. The GLOW workflow and its user manual can be downloaded at http://miaolab.org/GLOW.

摘要

我们引入了一种高斯加速分子动力学(GaMD)、深度学习(DL)和自由能剖析工作流程(GLOW),以预测生物分子的分子决定因素并绘制自由能景观。首先对感兴趣的生物分子进行全原子 GaMD 增强采样模拟。然后从 GaMD 模拟帧计算结构接触图,并将其转换为图像,使用卷积神经网络构建 DL 模型。重要的结构接触进一步从结构接触梯度的注意力图的 DL 模型中确定,这使我们能够识别系统反应坐标。最后,通过 GaMD 模拟的能量重新加权计算所选反应坐标的自由能分布。我们还成功地使用腺苷 A 受体(AAR)作为模型系统,展示了 GLOW 对 G 蛋白偶联受体的激活和变构调节的特征描述。GLOW 的发现与 AAR 的先前实验和计算研究高度一致,同时也为受体功能提供了进一步的机制见解。总之,GLOW 为绘制生物分子的自由能景观提供了一种系统的方法。GLOW 工作流程及其用户手册可在 http://miaolab.org/GLOW 下载。

相似文献

3
Gaussian Accelerated Molecular Dynamics in NAMD.NAMD中的高斯加速分子动力学
J Chem Theory Comput. 2017 Jan 10;13(1):9-19. doi: 10.1021/acs.jctc.6b00931. Epub 2016 Dec 30.
7
Gaussian accelerated molecular dynamics (GaMD): principles and applications.高斯加速分子动力学(GaMD):原理与应用
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
9

引用本文的文献

9
Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors.G蛋白偶联受体的深度学习动态变构
JACS Au. 2023 Nov 2;3(11):3165-3180. doi: 10.1021/jacsau.3c00503. eCollection 2023 Nov 27.
10
Molecular Dynamics Activation of γ-Secretase for Cleavage of the Notch1 Substrate.分子动力学激活 γ-分泌酶以切割 Notch1 底物。
ACS Chem Neurosci. 2023 Dec 6;14(23):4216-4226. doi: 10.1021/acschemneuro.3c00594. Epub 2023 Nov 9.

本文引用的文献

1
Gaussian accelerated molecular dynamics (GaMD): principles and applications.高斯加速分子动力学(GaMD):原理与应用
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
2
GPCR activation mechanisms across classes and macro/microscales.跨类和宏/微观尺度的 G 蛋白偶联受体激活机制。
Nat Struct Mol Biol. 2021 Nov;28(11):879-888. doi: 10.1038/s41594-021-00674-7. Epub 2021 Nov 10.
4
Positive allosteric mechanisms of adenosine A receptor-mediated analgesia.腺苷 A 受体介导的镇痛的正变构机制。
Nature. 2021 Sep;597(7877):571-576. doi: 10.1038/s41586-021-03897-2. Epub 2021 Sep 8.
7
Mechanism of Ligand Recognition by Human ACE2 Receptor.人血管紧张素转化酶 2 受体的配体识别机制。
J Phys Chem Lett. 2021 May 27;12(20):4814-4822. doi: 10.1021/acs.jpclett.1c01064. Epub 2021 May 17.
8
Pathways and Mechanism of Caffeine Binding to Human Adenosine A Receptor.咖啡因与人腺苷A受体结合的途径与机制
Front Mol Biosci. 2021 Apr 27;8:673170. doi: 10.3389/fmolb.2021.673170. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验