Godaux Damien, Bailleul Benjamin, Berne Nicolas, Cardol Pierre
Department of Life Sciences, Genetics and Physiology of Microalgae, PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium.
Department of Life Sciences, Genetics and Physiology of Microalgae, PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium
Plant Physiol. 2015 Jun;168(2):648-58. doi: 10.1104/pp.15.00105. Epub 2015 Apr 30.
The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.
模式绿藻莱茵衣藻在其自然环境中经常会经历黑暗和缺氧时期。在此,我们借助在叶绿体氧敏感氢化酶成熟过程中存在缺陷的突变体,或在质子梯度调节样蛋白1(PGRL1)依赖的围绕光系统I的循环电子流(PSI-CEF)中存在缺陷的突变体,证明了这些替代电子流(AEF)在从黑暗缺氧转变为光照期间光合碳固定再激活过程中的顺序贡献。在光照开始时,氢化酶活性维持来自光系统II的线性电子流,随后野生型中会出现短暂的PSI-CEF。通过促进ATP合成而不净产生光合还原剂,这两种AEF对于恢复光照下二氧化碳固定能力至关重要。我们的数据还表明,随着光照时间的延长氢气释放减少可能是由于铁氧化还原蛋白-NADP(+)氧化还原酶和氢化酶之间对还原型铁氧化还原蛋白的竞争,而不是由于氢化酶活性对氧气的敏感性。最后,双突变体pgrl1氢化酶成熟因子G-2中缺乏这两种替代途径对光合作用和生长有害,并且不能被任何其他AEF或缺氧代谢反应所补偿。这突出了氢化酶活性和PSI-CEF在微藻在低氧环境中的生态成功中的作用。