Suppr超能文献

非平衡态下锂离子在 LiFePO4 中的嵌入动力学。

Kinetics of non-equilibrium lithium incorporation in LiFePO4.

出版信息

Nat Mater. 2011 Jul 17;10(8):587-90. doi: 10.1038/nmat3065.

Abstract

Lithium-ion batteries are a key technology for multiple clean energy applications. Their energy and power density is largely determined by the cathode materials, which store Li by incorporation into their crystal structure. Most commercialized cathode materials, such as LiCoO(2) (ref. 1), LiMn(2)O(4) (ref. 2), Li(Ni,Co,Al)O(2) or Li(Ni,Co,Mn)O(2) (ref. 3), form solid solutions over a large concentration range, with occasional weak first-order transitions as a result of ordering of Li or electronic effects. An exception is LiFePO(4), which stores Li through a two-phase transformation between FePO(4) and LiFePO(4) (refs 5-8). Notwithstanding having to overcome extra kinetic barriers, such as nucleation of the second phase and growth through interface motion, the observed rate capability of LiFePO(4) has become remarkably high. In particular, once transport limitations at the electrode level are removed through carbon addition and particle size reduction, the innate rate capability of LiFePO(4) is revealed to be very high. We demonstrate that the reason LiFePO(4) functions as a cathode at reasonable rate is the availability of a single-phase transformation path at very low overpotential, allowing the system to bypass nucleation and growth of a second phase. The Li(x)FePO(4) system is an example where the kinetic transformation path between LiFePO(4) and FePO(4) is fundamentally different from the path deduced from its equilibrium phase diagram.

摘要

锂离子电池是多种清洁能源应用的关键技术。它们的能量和功率密度在很大程度上取决于阴极材料,这些材料通过掺入其晶体结构来储存锂离子。大多数商业化的阴极材料,如 LiCoO(2)(参考文献 1)、LiMn(2)O(4)(参考文献 2)、Li(Ni,Co,Al)O(2) 或 Li(Ni,Co,Mn)O(2)(参考文献 3),在很大的浓度范围内形成固溶体,偶尔会由于锂离子或电子效应的有序化而出现弱一级相变。LiFePO(4) 是一个例外,它通过 FePO(4) 和 LiFePO(4) 之间的两相转变来储存锂离子(参考文献 5-8)。尽管必须克服额外的动力学障碍,如第二相的成核和通过界面运动的生长,但 LiFePO(4) 的观察到的倍率性能已经变得非常高。特别是,一旦通过添加碳和减小颗粒尺寸来消除电极水平上的传输限制,LiFePO(4) 的固有倍率性能就会显示出非常高。我们证明了 LiFePO(4) 能够以合理的速率作为阴极的原因是在非常低的过电势下存在单相转变路径,允许系统绕过第二相的成核和生长。Li(x)FePO(4) 体系是一个例子,其中 LiFePO(4) 和 FePO(4) 之间的动力学转变路径与从其平衡相图推断出的路径根本不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验