Suppr超能文献

统计信号处理与运动皮层

Statistical Signal Processing and the Motor Cortex.

作者信息

Brockwell A E, Kass R E, Schwartz A B

机构信息

A. Brockwell and R. Kass are with the Department of Statistics at Carnegie Mellon University. A. Schwartz is with the Department of Neurobiology at the University of Pittsburgh.

出版信息

Proc IEEE Inst Electr Electron Eng. 2007 May;95(5):881-898. doi: 10.1109/JPROC.2007.894703.

Abstract

Over the past few decades, developments in technology have significantly improved the ability to measure activity in the brain. This has spurred a great deal of research into brain function and its relation to external stimuli, and has important implications in medicine and other fields. As a result of improved understanding of brain function, it is now possible to build devices that provide direct interfaces between the brain and the external world. We describe some of the current understanding of function of the motor cortex region. We then discuss a typical likelihood-based state-space model and filtering based approach to address the problems associated with building a motor cortical-controlled cursor or robotic prosthetic device. As a variation on previous work using this approach, we introduce the idea of using Markov chain Monte Carlo methods for parameter estimation in this context. By doing this instead of performing maximum likelihood estimation, it is possible to expand the range of possible models that can be explored, at a cost in terms of computational load. We demonstrate results obtained applying this methodology to experimental data gathered from a monkey.

摘要

在过去几十年中,技术发展显著提高了测量大脑活动的能力。这激发了大量关于脑功能及其与外部刺激关系的研究,并在医学和其他领域具有重要意义。由于对脑功能的理解有所改善,现在有可能制造出在大脑与外部世界之间提供直接接口的设备。我们描述了目前对运动皮层区域功能的一些理解。然后,我们讨论一种典型的基于似然性的状态空间模型和基于滤波的方法,以解决与构建运动皮层控制的光标或机器人假肢设备相关的问题。作为使用此方法的先前工作的一种变体,我们引入了在这种情况下使用马尔可夫链蒙特卡罗方法进行参数估计的想法。通过这样做而不是执行最大似然估计,可以扩大可探索的可能模型的范围,但代价是计算量增加。我们展示了将这种方法应用于从猴子收集的实验数据所获得的结果。

相似文献

1
Statistical Signal Processing and the Motor Cortex.统计信号处理与运动皮层
Proc IEEE Inst Electr Electron Eng. 2007 May;95(5):881-898. doi: 10.1109/JPROC.2007.894703.
7
Cortical control of a prosthetic arm for self-feeding.用于自主进食的假肢手臂的皮质控制。
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.

引用本文的文献

2
Neuroplasticity subserving the operation of brain-machine interfaces.支持脑机接口运作的神经可塑性。
Neurobiol Dis. 2015 Nov;83:161-71. doi: 10.1016/j.nbd.2015.05.001. Epub 2015 May 9.
3
Sparse decoding of multiple spike trains for brain-machine interfaces.多尖峰序列的稀疏解码在脑机接口中的应用。
J Neural Eng. 2012 Oct;9(5):054001. doi: 10.1088/1741-2560/9/5/054001. Epub 2012 Sep 6.
5
Approximate Methods for State-Space Models.状态空间模型的近似方法。
J Am Stat Assoc. 2010 Mar;105(489):170-180. doi: 10.1198/jasa.2009.tm08326.
6
State-space decoding of primary afferent neuron firing rates.状态空间解码初级传入神经元放电率。
J Neural Eng. 2011 Feb;8(1):016002. doi: 10.1088/1741-2560/8/1/016002. Epub 2011 Jan 19.
7
Synergistic Coding by Cortical Neural Ensembles.皮层神经集群的协同编码
IEEE Trans Inf Theory. 2010 Feb 1;56(2):875-899. doi: 10.1109/TIT.2009.2037057.
9
Improved decoding of limb-state feedback from natural sensors.来自自然传感器的肢体状态反馈解码得到改进。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4206-9. doi: 10.1109/IEMBS.2009.5333614.

本文引用的文献

1
Universal Residuals: A Multivariate Transformation.通用残差:一种多元变换
Stat Probab Lett. 2007 Aug;77(14):1473-1478. doi: 10.1016/j.spl.2007.02.008.
4
A high-performance brain-computer interface.一种高性能脑机接口。
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
6
Muscle representation in the macaque motor cortex: an anatomical perspective.猕猴运动皮层中的肌肉表征:解剖学视角
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62. doi: 10.1073/pnas.0602933103. Epub 2006 May 15.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验