Suppr超能文献

支持脑机接口运作的神经可塑性。

Neuroplasticity subserving the operation of brain-machine interfaces.

作者信息

Oweiss Karim G, Badreldin Islam S

机构信息

Department of Electrical and Computer Engineering, University of Florida, FL, USA; Department of Biomedical Engineering, University of Florida, FL, USA; Department of Neuroscience, McKnight Brain Institute, University of Florida, FL, USA.

Department of Electrical and Computer Engineering, University of Florida, FL, USA.

出版信息

Neurobiol Dis. 2015 Nov;83:161-71. doi: 10.1016/j.nbd.2015.05.001. Epub 2015 May 9.

Abstract

Neuroplasticity is key to the operation of brain machine interfaces (BMIs)-a direct communication pathway between the brain and a man-made computing device. Whereas exogenous BMIs that associate volitional control of brain activity with neurofeedback have been shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent stimulation--and thus may curtail the time scale that governs natural sensorimotor integration loops--have been shown to induce short lasting plasticity. Here we summarize recent findings from studies using both categories of BMIs, and discuss the fundamental principles that may underlie their operation and the longevity of the plasticity they induce. We draw comparison to plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for the purpose of re-organization of target brain regions and directed augmentation of sensorimotor maps, and suggest possible avenues for future work to maximize their efficacy and viability in clinical applications.

摘要

神经可塑性是脑机接口(BMI)运行的关键——脑机接口是大脑与人工计算设备之间的直接通信路径。虽然已证明将大脑活动的意志控制与神经反馈相关联的外源性BMI会诱导持久的可塑性,但使用长期依赖活动的刺激(因此可能缩短控制自然感觉运动整合回路的时间尺度)的内源性BMI已被证明会诱导短暂的可塑性。在这里,我们总结了使用这两类BMI的研究的最新发现,并讨论了可能构成其运行基础的基本原理以及它们所诱导的可塑性的持续时间。我们将其与已知介导自然感觉运动技能学习的可塑性机制进行比较,并讨论可能限制成年哺乳动物脑内源性BMI效应的稳态调节原理。我们提出,可以设计BMI以促进结构和功能可塑性,以重组目标脑区并定向增强感觉运动图谱,并为未来的工作提出可能的途径,以最大限度地提高其在临床应用中的疗效和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe6/4639466/74a36e6565b8/nihms-693831-f0001.jpg

相似文献

1
Neuroplasticity subserving the operation of brain-machine interfaces.支持脑机接口运作的神经可塑性。
Neurobiol Dis. 2015 Nov;83:161-71. doi: 10.1016/j.nbd.2015.05.001. Epub 2015 May 9.
2
Brain-machine interfaces in neurorehabilitation of stroke.脑机接口在中风神经康复中的应用
Neurobiol Dis. 2015 Nov;83:172-9. doi: 10.1016/j.nbd.2014.11.025. Epub 2014 Dec 7.
5
Parsing learning in networks using brain-machine interfaces.利用脑机接口进行网络中的解析学习。
Curr Opin Neurobiol. 2017 Oct;46:76-83. doi: 10.1016/j.conb.2017.08.002. Epub 2017 Aug 24.
8
9
Neural Plasticity in Sensorimotor Brain-Machine Interfaces.感觉运动脑机接口中的神经可塑性。
Annu Rev Biomed Eng. 2023 Jun 8;25:51-76. doi: 10.1146/annurev-bioeng-110220-110833. Epub 2023 Feb 28.

引用本文的文献

6
Progress in Neuroengineering for brain repair: New challenges and open issues.用于脑修复的神经工程学进展:新挑战与未决问题
Brain Neurosci Adv. 2018 May 21;2:2398212818776475. doi: 10.1177/2398212818776475. eCollection 2018 Jan-Dec.
7
Closed-Loop Neuromodulation in Physiological and Translational Research.闭环神经调节在生理和转化研究中的应用。
Cold Spring Harb Perspect Med. 2019 Nov 1;9(11):a034314. doi: 10.1101/cshperspect.a034314.

本文引用的文献

4
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.
8
Corticospinal mirror neurons.皮质脊髓镜像神经元
Philos Trans R Soc Lond B Biol Sci. 2014 Apr 28;369(1644):20130174. doi: 10.1098/rstb.2013.0174. Print 2014.
10
Intention estimation in brain-machine interfaces.脑机接口中的意图估计。
J Neural Eng. 2014 Feb;11(1):016004. doi: 10.1088/1741-2560/11/1/016004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验