Suppr超能文献

多尖峰序列的稀疏解码在脑机接口中的应用。

Sparse decoding of multiple spike trains for brain-machine interfaces.

机构信息

Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

J Neural Eng. 2012 Oct;9(5):054001. doi: 10.1088/1741-2560/9/5/054001. Epub 2012 Sep 6.

Abstract

Brain-machine interfaces (BMIs) rely on decoding neuronal activity from a large number of electrodes. The implantation procedures, however, do not guarantee that all recorded units encode task-relevant information: selection of task-relevant neurons is critical to performance but is typically performed based on heuristics. Here, we describe an algorithm for decoding/classification of volitional actions from multiple spike trains, which automatically selects the relevant neurons. The method is based on sparse decomposition of the high-dimensional neuronal feature space, projecting it onto a low-dimensional space of codes serving as unique class labels. The new method is tested against a range of existing methods using simulations and recordings of the activity of 1592 neurons in 23 neurosurgical patients who performed motor or speech tasks. The parameter estimation algorithm is orders of magnitude faster than existing methods and achieves significantly higher accuracies for both simulations and human data, rendering sparse decoding highly attractive for BMIs.

摘要

脑机接口(BMI)依赖于从大量电极解码神经元活动。然而,植入程序并不能保证所有记录的单元都编码与任务相关的信息:选择与任务相关的神经元对于性能至关重要,但通常是基于启发式方法进行的。在这里,我们描述了一种从多个尖峰列车解码/分类自主动作的算法,该算法自动选择相关神经元。该方法基于高维神经元特征空间的稀疏分解,将其投影到作为唯一类别标签的低维代码空间上。使用模拟和 23 名接受过运动或言语任务的神经外科患者的 1592 个神经元的活动记录,对新方法与一系列现有方法进行了测试。参数估计算法比现有方法快几个数量级,并且在模拟和人体数据方面都实现了显著更高的准确性,这使得稀疏解码对于 BMI 非常有吸引力。

相似文献

1
Sparse decoding of multiple spike trains for brain-machine interfaces.
J Neural Eng. 2012 Oct;9(5):054001. doi: 10.1088/1741-2560/9/5/054001. Epub 2012 Sep 6.
4
Accurate decoding of reaching movements from field potentials in the absence of spikes.
J Neural Eng. 2012 Aug;9(4):046006. doi: 10.1088/1741-2560/9/4/046006. Epub 2012 Jun 25.
5
Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
J Neural Eng. 2013 Apr;10(2):026008. doi: 10.1088/1741-2560/10/2/026008. Epub 2013 Feb 21.
8
Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
Neural Netw. 2009 Jul-Aug;22(5-6):781-90. doi: 10.1016/j.neunet.2009.06.007. Epub 2009 Jun 30.
9
The influence of prior pronunciations on sensorimotor cortex activity patterns during vowel production.
J Neural Eng. 2018 Dec;15(6):066025. doi: 10.1088/1741-2552/aae329. Epub 2018 Sep 21.
10
Firing-rate-modulated spike detection and neural decoding co-design.
J Neural Eng. 2023 May 5;20(3). doi: 10.1088/1741-2552/accece.

引用本文的文献

1
Neural Decoding: A Predictive Viewpoint.
Neural Comput. 2017 Dec;29(12):3290-3310. doi: 10.1162/neco_a_01020. Epub 2017 Sep 28.
3
Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):272-82. doi: 10.1109/TNSRE.2015.2470527. Epub 2015 Aug 28.
4
Prediction of hand trajectory from electrocorticography signals in primary motor cortex.
PLoS One. 2013 Dec 27;8(12):e83534. doi: 10.1371/journal.pone.0083534. eCollection 2013.
5
Neuroimaging as a window into gait disturbances and freezing of gait in patients with Parkinson's disease.
Curr Neurol Neurosci Rep. 2013 Dec;13(12):411. doi: 10.1007/s11910-013-0411-y.
6
Cognitive-motor brain-machine interfaces.
J Physiol Paris. 2014 Feb;108(1):38-44. doi: 10.1016/j.jphysparis.2013.05.005. Epub 2013 Jun 15.

本文引用的文献

1
Structured neuronal encoding and decoding of human speech features.
Nat Commun. 2012;3:1015. doi: 10.1038/ncomms1995.
2
Combining sparseness and smoothness improves classification accuracy and interpretability.
Neuroimage. 2012 Apr 2;60(2):1550-61. doi: 10.1016/j.neuroimage.2011.12.085. Epub 2012 Jan 10.
3
Statistical Signal Processing and the Motor Cortex.
Proc IEEE Inst Electr Electron Eng. 2007 May;95(5):881-898. doi: 10.1109/JPROC.2007.894703.
4
Reproducibility and discriminability of brain patterns of semantic categories enhanced by congruent audiovisual stimuli.
PLoS One. 2011;6(6):e20801. doi: 10.1371/journal.pone.0020801. Epub 2011 Jun 29.
5
A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG.
Neuroimage. 2011 Jun 15;56(4):1929-45. doi: 10.1016/j.neuroimage.2011.03.032. Epub 2011 Mar 21.
6
State-space decoding of primary afferent neuron firing rates.
J Neural Eng. 2011 Feb;8(1):016002. doi: 10.1088/1741-2560/8/1/016002. Epub 2011 Jan 19.
7
Decoding complete reach and grasp actions from local primary motor cortex populations.
J Neurosci. 2010 Jul 21;30(29):9659-69. doi: 10.1523/JNEUROSCI.5443-09.2010.
8
Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
J Neural Eng. 2010 Aug;7(4):046012. doi: 10.1088/1741-2560/7/4/046012. Epub 2010 Jul 19.
9
Sparse coding and high-order correlations in fine-scale cortical networks.
Nature. 2010 Jul 29;466(7306):617-21. doi: 10.1038/nature09178. Epub 2010 Jul 4.
10
Ensemble fractional sensitivity: a quantitative approach to neuron selection for decoding motor tasks.
Comput Intell Neurosci. 2010;2010:648202. doi: 10.1155/2010/648202. Epub 2010 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验