Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Biophys J. 2011 Jul 20;101(2):477-85. doi: 10.1016/j.bpj.2011.05.070.
We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided.
我们报告了统计时间序列分析工具,这些工具可从分子机器实验观测的时间轨迹中快速、精确地提取离散状态动态。通过将物理知识和统计创新构建到分析工具中,我们提供了从高度相关的分子噪声中估计隐藏的离散状态转换的技术。我们在细菌鞭毛马达和 F1-ATP 酶的步阶旋转的模拟和真实示例上演示了我们方法的有效性。我们表明,我们的方法可以清晰地识别分子步骤、周期性和级联过程,这些对于现有算法来说太弱以至于无法检测到,并且可以比现有算法快得多。我们的技术代表了朝着自动化分析高采样率、分子机器动力学方向迈出的一步。提供了实现这些技术的模块化、开源软件。