Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering Science, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK.
Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
J R Soc Interface. 2014 Aug 6;11(97):20140320. doi: 10.1098/rsif.2014.0320.
Most free-swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. A key open question concerns varying mechanisms by which reorientation occurs. We combine mathematical modelling with analysis of a large tracking dataset to study the poorly understood reorientation mechanism in the monoflagellate species Rhodobacter sphaeroides. The flagellum on this species rotates counterclockwise to propel the bacterium, periodically ceasing rotation to enable reorientation. When rotation restarts the cell body usually points in a new direction. It has been assumed that the new direction is simply the result of Brownian rotation. We consider three variants of a self-propelled particle model of bacterial motility. The first considers rotational diffusion only, corresponding to a non-chemotactic mutant strain. Two further models incorporate stochastic reorientations, describing 'run-and-tumble' motility. We derive expressions for key summary statistics and simulate each model using a stochastic computational algorithm. We also discuss the effect of cell geometry on rotational diffusion. Working with a previously published tracking dataset, we compare predictions of the models with data on individual stopping events in R. sphaeroides. This provides strong evidence that this species undergoes some form of active reorientation rather than simple reorientation by Brownian rotation.
大多数自由游动的细菌大致沿直线运动,其间穿插着随机的重新定向阶段。一个关键的开放性问题涉及到重新定向发生的不同机制。我们结合数学建模和对大量跟踪数据集的分析,研究了单鞭毛物种球形红杆菌中理解甚少的重新定向机制。该物种的鞭毛逆时针旋转以推动细菌,周期性地停止旋转以实现重新定向。当旋转重新开始时,细胞体通常指向一个新的方向。人们一直认为,新的方向只是布朗旋转的结果。我们考虑了三种细菌运动的自主推进粒子模型变体。第一个仅考虑旋转扩散,对应于非趋化突变株。另外两个模型包含随机重新定向,描述了“跑和跌”运动。我们推导了关键汇总统计量的表达式,并使用随机计算算法模拟每个模型。我们还讨论了细胞几何形状对旋转扩散的影响。使用以前发表的跟踪数据集,我们将模型的预测与球形红杆菌中单个停止事件的数据进行比较。这有力地表明,该物种经历了某种形式的主动重新定向,而不是简单的布朗旋转重新定向。